DOI QR코드

DOI QR Code

Polarization Distortion and Compensation of Circularly Polarized Emission from Chiral Metasurfaces

  • Yeonsoo Lim (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • In Cheol Seo (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Young Chul Jun (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2022.12.13
  • Accepted : 2023.01.27
  • Published : 2023.04.25

Abstract

Circularly polarized (CP) emission can be achieved by integrating emissive materials into chiral metasurfaces. Such CP light sources in integrated device platforms are desirable for important potential applications. However, the exact characterization of the polarization state in CP emission may include some errors because of the unwanted polarization distortion caused by optical components (e.g., beam splitter) in the optical setup. Here, we consider CP emission measurements from chiral metasurfaces and characterize the polarization distortion caused by the beam splitter. We first detail the procedures for the Stokes parameters and Mueller matrix measurements. Then, we directly measure the Mueller matrix of the beam splitter and retrieve the original polarization state of CP emission from our metasurface sample. Using the measured Mueller matrix of the beam splitter, we specifically identify what contributes to polarization distortion in CP emission. Our work may provide useful guidelines for the characterization and compensation of polarization distortion in general Stokes parameter measurements.

Keywords

Acknowledgement

National Research Foundation (NRF) of Korea (NRF-2022R1F1A1074532)

References

  1. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, Cambridge, UK, 2009).
  2. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, "Photoinduced handedness switching in terahertz chiral metamolecules," Nat. Commun. 3, 942 (2012).
  3. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, "Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook," Adv. Mater. 25, 2517-2534 (2013). https://doi.org/10.1002/adma.201205178
  4. A. Y. Zhu, W. T. Chen, A. Zaidi, Y.-W. Huang, M. Khorasaninejad, V. Sanjeev, C.-W. Qiu, and F. Capasso, "Giant intrinsic chiro-optical activity in planar dielectric nanostructures," Light Sci. Appl. 7, 17158 (2018).
  5. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, "Circularly polarized light emission from semiconductor planar chiral nanostructures," Phys. Rev. Lett. 106, 057402 (2011).
  6. X. Zhang, Y. Liu, J. Han, Y. Kivshar, and Q. Song, "Chiral emission from resonant metasurfaces," Science 377, 1215-1218 (2022). https://doi.org/10.1126/science.abq7870
  7. J. Tian, G. Adamo, H. Liu, M. Klein, S. Han, H. Liu, and C. Soci, "Optical Rashba effect in a light-emitting Perovskite metasurface," Adv. Mater. 34, 2109157 (2022).
  8. A. Kakkanattu, N. Eerqing, S. Ghamari, and F. Vollmer, "Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements," Opt. Express 29, 12543-12579 (2021). https://doi.org/10.1364/OE.421839
  9. B. Ranjbar and P. Gill, "Circular Dichroism techniques: biomolecular and nanostructural analyses- A review," Chem. Biol. Drug Des. 74, 101-120 (2009). https://doi.org/10.1111/j.1747-0285.2009.00847.x
  10. T. Kakkar, C. Keijzer, M. Rodier, T. Bukharova, M. Taliansky, A. J. Love, J. J. Milner, A. S. Karimullah, L. D. Barron, N. Gadegaard, A. J. Lapthorn, and M. Kadodwala, "Superchiral near fields detect virus structure," Light Sci. Appl. 9, 195 (2020).
  11. J. Kumar, H. Erana, E. Lopez-Martinez, N. Claes, V. F. Martin, D. M. Solis, S. Bals, A. L. Cortajarena, J. Castilla, and L. M. Liz-Marzan, "Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality," Proc. Natl. Acad. Sci. U.S.A. 115, 3225-3230 (2018). https://doi.org/10.1073/pnas.1721690115
  12. D. Leung, S. O. Kang, and E. V. Anslyn, "Rapid determination of enantiomeric excess: A focus on optical approaches," Chem. Soc. Rev. 41, 448-479 (2012). https://doi.org/10.1039/C1CS15135E
  13. Y.-C. Liu, Y.-L. Lo, and C.-C. Liao, "Compensation of nonideal beam splitter polarization distortion effect in Michelson interferometer," Opt. Commun. 361, 153-161 (2016). https://doi.org/10.1016/j.optcom.2015.09.099
  14. S. Zhang, H. Gu, J. Liu, H. Jiang, X. Chen, C. Zhang, and S. Liu, "Characterization of beam splitters in the calibration of a six-channel Stokes polarimeter," J. Opt. 20, 125606 (2018).
  15. J. Liu, C. Zhang, Z. Zhong, H. Gu, X. Chen, H. Jiang, and S. Liu, "Measurement configuration optimization for dynamic metrology using Stokes polarimetry," Meas. Sci. Technol. 29, 054010 (2018).
  16. Z. Chen, Y. Yao, Y. Zhu, and H. Ma, "Removing the dichroism and retardance artifacts in a collinear backscattering Mueller matrix imaging system," Opt. Express 26, 28288-28301 (2018). https://doi.org/10.1364/oe.26.028288
  17. Z. Chen, R. Meng, Y. Zhu, and H. Ma, "A collinear reflection Mueller matrix microscope for backscattering Mueller matrix imaging," Opt. Lasers Eng. 129, 106055 (2020).
  18. A. Kokhanovsky, Springer Series in light Scattering (Springer, UK, 2020), Volume 4.
  19. Y. Lim, I. C. Seo, S.-C. An, Y. Kim, C. Park, B. H. Woo, S. Kim, H.-R. Park, and Y. C. Jun, "Maximally chiral emission via chiral quasibound states in the continuum," Laser Photonics Rev. 17, 2200611 (2022).
  20. E. Hecht, Optics, 4th ed. (Addison-Wesley, CA, USA, 2002).
  21. E. Hecht, "Note on an operational definition of the Stokes parameters," Am. J. Phys. 38, 1156-1158 (1970). https://doi.org/10.1119/1.1976574
  22. H. G. Berry, G. Gabrielse, and A. E. Livingston, "Measurement of the Stokes parameters of light," Appl. Opt. 16, 3200-3205 (1977). https://doi.org/10.1364/AO.16.003200
  23. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, "Measuring the Stokes polarization parameters," Am. J. Phys. 75, 163-168 (2007). https://doi.org/10.1119/1.2386162
  24. X. Yin, J. Jin, M. Soljacic, C. Peng, and B. Zhen, "Observation of topologically enabled unidirectional guided resonances," Nature 580, 467-471 (2020). https://doi.org/10.1038/s41586-020-2181-4
  25. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, UK, 2007).
  26. C. I. Osorio, A. Mohtashami, and A. F. Koenderink, "K-space polarimetry of bullseye plasmon antennas," Sci. Rep. 5, 9966 (2015).
  27. C.-C. Liao and Y.-L. Lo, "Extraction of anisotropic parameters of turbid media using hybrid model comprising differentialand decomposition-based Mueller matrices," Opt. Express 21, 16831-16853 (2013). https://doi.org/10.1364/OE.21.016831
  28. C. Chen, X. Chen, C. Wang, S. Sheng, L. Song, H. Gu, and S. Liu, "Imaging Mueller matrix ellipsometry with sub-micron resolution based on back focal plane scanning," Opt. Express 29, 32712-32727 (2021). https://doi.org/10.1364/OE.439941
  29. D. Layden, M. F. G. Wood, and I. A. Vitkin, "Optimum selection of input polarization states in determining the sample Mueller matrix: A dual photoelastic polarimeter approach," Opt. Express 20, 20466-20481 (2012). https://doi.org/10.1364/OE.20.020466
  30. P. A. Letnes, I. S. Nerbo, L. M. S. Aas, P. G. Ellingsen, and M. Kildemo, "Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm," Opt. Express 18, 23095-23103 (2010). https://doi.org/10.1364/OE.18.023095
  31. M. H. Smith, "Optimization of a dual-rotating-retarder Mueller matrix polarimeter," Appl. Opt. 41, 2488-2493 (2002). https://doi.org/10.1364/AO.41.002488
  32. I. J. Vaughn and B. G. Hoover, "Noise reduction in a laser polarimeter based on discrete waveplate rotations," Opt. Express 16, 2091-2108 (2008). https://doi.org/10.1364/OE.16.002091
  33. S. Yoo and Q.-H. Park, "Polarimetric microscopy for optical control and high precision measurement of valley polarization," Rev. Sci. Instrum. 89, 063118 (2018).
  34. I. C. Seo, S. Kim, B. H. Woo, I.-S. Chung, and Y. C. Jun, "Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling," Nanophotonics 9, 4565-4577 (2020). https://doi.org/10.1515/nanoph-2020-0343
  35. I. C. Seo, Y. Lim, S.-C. An, B. H. Woo, S. Kim, J. G. Son, S. Yoo, Q. H. Park, J. Y. Kim, and Y. C. Jun, "Circularly polarized emission from organic-inorganic hybrid Perovskites via chiral fano resonances," ACS Nano 15, 13781-13793 (2021). https://doi.org/10.1021/acsnano.1c05421
  36. S. Kim, B. H. Woo, S.-C. An, Y. Lim, I. C. Seo, D.-S. Kim, S. Yoo, Q. H. Park, and Y. C. Jun, "Topological control of 2D Perovskite emission in the strong coupling regime," Nano Lett. 21, 10076-10085 (2021)