DOI QR코드

DOI QR Code

Environment-dependent Broadband Perfect Absorption of Metal-insulator-metal Metamaterial Systems

  • Feng Li (School of Communication and Information Engineering, Shanghai Technical Institute of Electronics & Information) ;
  • Yulong Tang (Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University) ;
  • Qingsong Peng (School of Communication and Information Engineering, Shanghai Technical Institute of Electronics & Information) ;
  • Guosheng Hu (School of Communication and Information Engineering, Shanghai Technical Institute of Electronics & Information)
  • Received : 2022.12.26
  • Accepted : 2023.02.04
  • Published : 2023.04.25

Abstract

Based on calculations using the macroscopic Maxwell's equations with mesoscopic boundary conditions, light absorption by a layered metal-insulator-metal (MIM) metamaterial system embedded in three different environments is investigated. Increasing the top metal thickness shifts the broad absorption band to lower dielectric-constant regions and longer wavelengths, for either TM or TE waves. Boosting the dielectric-layer thickness redshifts the broadband absorption to regions of larger dielectric constant. In air, for the dielectric-constant range of 0.86-3.40, the absorption of the system exceeds 98% across 680-1,033 nm. In seawater with optimized dielectric constant, ≥94% light absorption over 400-1,200 nm can be achieved; particularly in the wavelength range of 480-960 nm and dielectric-constant range of 0.82-3.50, the absorption is greater than 98%. In an environment with even higher refractive index (1.74), ≥98% light absorption over 400-1,200 nm can be achieved, giving better performance. The influence of angle of incidence on light absorption of the MIM system is also analyzed, and the angle tolerance for ≥90% broadband absorption of a TM wave is up to 40° in an environment with large refractive index. While the incident-angle dependence of the absorption of a TE wave is nearly the same for different circumstances, the situation is different for a TM wave.

Keywords

Acknowledgement

Natural Science Foundation of Shanghai (China, No. 19ZR1427100); the National Natural Science Foundation of China (61306072, 61675129); the Technique Foundation of Shanghai Technical Institute of Electronics & Information (HX-22-TX034).

References

  1. A. Ghobadi, H. Hajian, B. Butun, and E. Ozbay, "Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers," ACS Photonics 5, 4203-4221 (2018). https://doi.org/10.1021/acsphotonics.8b00872
  2. S. Shu, Z. Li, and Y. Y. Li, "Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime," Opt. Express 21, 25307-25315 (2013). https://doi.org/10.1364/OE.21.025307
  3. T.-A. Chen, M.-J. Yu, Y.-J. Lu, and T.-J. Yen, "Ultra broadband, lithography free, omnidirectional, and polarization insensitive perfect Absorber," Sci. Rep. 11, 5173 (2021).
  4. Z. Li, S. Butun, and K. Aydin, "Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films," Photonics 2, 183-188 (2015).
  5. A. Ghobadi, H. Hajian, A. R. Rashed, B. Butun, and E. Ozbay, "Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth," Photonics Res. 6, 168-176 (2018). https://doi.org/10.1364/PRJ.6.000168
  6. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, "Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings," Sci. Rep. 5, 15137 (2015).
  7. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, "Broadband perfect absorber based on one ultrathin layer of refractory metal," Opt. Lett. 40, 2592-2595 (2015). https://doi.org/10.1364/OL.40.002592
  8. C. Min and G. Veronis, "Absorption switches in metaldielectric-metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009). https://doi.org/10.1364/OE.17.010757
  9. S. K. Chamoli, S. C. Singh, and C. Guo, "1-D Metal-dielectric-metal grating structure as an ultra-narrowband perfect plasmonic absorber in the visible and its application in glucose detection," Plasmonics 15, 1339-1350 (2020). https://doi.org/10.1007/s11468-020-01161-3
  10. B. Ishak, "Space Physics: An Introduction, by C. T. Russell, J. G. Luhmann and R. J. Strangeway," Contemp. Phys. 58, 199 (2017).
  11. T. Christensen, W. Yan, A. P. Jauho, M. Soljacic , and N. A. Mortensen, "Quantum corrections in nanoplasmonics: Shape, scale, and materia," Phys. Rev. Lett. 118, 157402 (2017).
  12. A.Varas, P. Garcia-Gonzalez, J. Feist, F. J. Garcia-Vidal, and A. Rubio, "Quantum plasmonics: from jellium models to ab initio calculations," Nanophotonics 5, 409-426 (2016). https://doi.org/10.1515/nanoph-2015-0141
  13. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, "Quantum mechanical effects in plasmonic structures with subnanometre gaps," Nat. Commun. 7, 11495 (2016).
  14. A. Campos, N. Troc, E. Cottancin, M. Pellarin, H. C. Weissker, J. Lerme, M. Kociakand, and M. Hillenkamp, "Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments," Nat. Phys. 15, 275-280 (2019). https://doi.org/10.1038/s41567-018-0345-z
  15. E. J. C. Dias, D. A. Iranzo, P. A. D. Goncalves, Y. Hajati, Y. V. Bludov, A. P. Jauho, N. A.Mortensen, F. H. L. Koppens, and N. M. R. Peres, "Probing nonlocal effects in metals with graphene plasmons," Phys. Rev. B 97, 245405 (2018).
  16. P. J. Feibelman, "Surface electromagnetic fields," Prog. Surf. Sci. 12, 287-407 (1982). https://doi.org/10.1016/0079-6816(82)90001-6
  17. A. Liebsch, Electronic Excitations at Metal Surfaces (Springer, USA, 1997), p. 155.