DOI QR코드

DOI QR Code

Tight Focusing Characteristics of Circularly Polarized Bessel-Gauss Beams with Fractional-order Vortex Modulation

  • Lingyu Wang (School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology) ;
  • Yu Miao (School of Health Science and Engineering, University of Shanghai for Science and Technology) ;
  • Mingzhu Xu (School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology) ;
  • Xiumin Gao (School of Optical-electrical and Computer Engineering, University of Shanghai for Science and Technology)
  • 투고 : 2022.12.22
  • 심사 : 2023.02.13
  • 발행 : 2023.04.25

초록

Radially polarized beams with the ability to generate a sub-wavelength sized spot in a longitudinal field provides significant applications in microscopic imaging, optical tweezers, lithography and so on. However, this excellent property can also be achieved based on conventional circularly polarized beams. Here, we demonstrate its ability to create a strong longitudinal field by comparing the tight focusing characteristics of fractional-order vortex modulated radial polarized and left-handed circular polarized Bessel-Gauss beams. Additionally, the possibility of generating arbitrary fractional-order vortex modulated Bessel-Gauss beams with a strong longitudinal field is demonstrated. A special modulation method of left-handed circularly polarized Bessel-Gauss beams modulated by a fractional-order vortex is adopted creatively and a series of regulation laws are obtained. Specifically, the fractional-order phase modulation parameter n can accurately control the number of optical lobes. The ratio of the pupil radius to the incident beam waist β1 can control the radius of the optical lobes. The first-order Bessel function amplitude modulation parameter β2 can control the number of layers of optical lobes. This work not only adds a new modulation method for optical micromanipulation and optical communication, but also enriches the research on fractional vortex beams which has very important academic significance.

키워드

과제정보

Parts of this work were supported by the National Key Research and Development Program of China (2018YFC1313803).

참고문헌

  1. G. Walker, A. S. Arnold, and S. Franke-Arnold, "Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor," Phys. Rev. Lett. 108, 243601 (2012).
  2. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, "Optical communications using orbital angular momentum beams," Adv. Opt. Photonics 7, 66-106 (2015). https://doi.org/10.1364/AOP.7.000066
  3. S.-M. Kim, "Visible light communication employing optical beamforming: A review," Curr. Opt. Photonics 2, 308-314 (2018). https://doi.org/10.3807/COPP.2018.2.4.308
  4. C. C. Li, P. Shi, L. P. Du, and X. C. Yuan, "Mapping the nearfield spin angular momenta in the structured surface plasmon polaritons field," Nanoscale 12, 13674-13679 (2020). https://doi.org/10.1039/d0nr00618a
  5. Z. Man, Z. Xi, X. Yuan, R.E. Burge, and H. Paul Urbach, "Dual Coaxial Longitudinal Polarization Vortex Structures," Phys. Rev. Lett. 124, 103901 (2020).
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). https://doi.org/10.1038/35085529
  7. F. Gori, G. Guattari, and C. Padovani, "Bessel-Gauss beams," Opt. Commun. 64, 491-495 (1987). https://doi.org/10.1016/0030-4018(87)90276-8
  8. X. Gao, M. Gao, S. Hu, H. Guo, J. Wang, and S. Zhuang, "High focusing of radially polarized Bessel-modulated Gaussian beam," Opt. Appl. 40, 965-974 (2010).
  9. X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, S. Zhuang, "Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen," Nat. Commun. 9, 5035 (2018).
  10. W. Yan, S. Lin, H. Lin, Y. Shen, Z. Nie, B. Jia, and X. Deng, "Dynamic control of magnetization spot arrays with three-dimensional orientations," Opt. Express 29, 961-973 (2021). https://doi.org/10.1364/OE.412260
  11. K. Cheng, Z. X. Li, J. Wu, Z.-D. Hu, and J. Wang, "Super-resolution imaging based on radially polarized beam induced superoscillation using an all-dielectric metasurface," Opt. Express 30, 2780-2791 (2022). https://doi.org/10.1364/OE.446481
  12. Z. Xing, X. Wang, Y. Fu, W. Liu, J. Cheng, and M. Zeng, "Sharper photonic nanojets generated by microspheres under higher-order radially polarized beam illumination," Appl. Opt. 60, 10816-10824 (2021). https://doi.org/10.1364/AO.443484
  13. R. M. Martinez-Ojeda, C. Hernandez-Garcia, and J. M. Bueno, "Enhancement of second harmonic microscopy images in collagen-based thick samples using radially polarized laser beams," Opt. Commun. 499, 127273 (2021).
  14. Y. Kozawa and S. Sato, "Focusing property of a double-ringshaped radially polarized beam," Opt. Lett. 31, 820-822 (2006). https://doi.org/10.1364/OL.31.000820
  15. J. Zeng, C. Liang, H. Wang, F. Wang, C. Zhao, G. Gbur, and Y. Cai, "Partially coherent radially polarized fractional vortex beam," Opt. Express 28, 11493-11513 (2020). https://doi.org/10.1364/oe.390922
  16. Z. Man, X. Dou, and S. Fu, "Pancharatnam-Berry phase shaping for control of the transverse enhancement of focusing," Opt. Lett. 44, 427-430 (2019). https://doi.org/10.1364/OL.44.000427
  17. Z. Man, P. Meng, and S. Fu, "Creation of complex nano-interferometric field structures," Opt. Lett. 45, 37-40 (2020). https://doi.org/10.1364/ol.45.000037
  18. W. Yan, Z. Nie, X. Zeng, G. Dai, M. Cai, Y. Shen, and X. Deng, "Machine-learning-enabled vectorial opto-magnetization orientation," Annalen der Physik 534, 2100287 (2022).
  19. N. Tian, L. Fu, and M. Gu, "Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam," Sci. Rep. 5, 13580 (2015).
  20. J. Wei, Y. Zha, and F. Gan, "Creation of Super-resolution non-diffraction beam by modulating circularly polarized lightwith ternary optical element," Prog. Electromagn. Res. 140, 589-598 (2013). https://doi.org/10.2528/PIER13042002
  21. C. Liang, W. Zhang, Z. Wu, D. Rui, Y. Sui, and H. Yang, "Beam shaping and speckle reduction in laser projection display systems using a vibrating diffractive optical element," Curr. Opt. Photonics 1, 23-28 (2017). https://doi.org/10.3807/COPP.2017.1.1.023
  22. T.-S. Deng, J. Parker, Y. Yifat, N. Shepherd, and N. F. Scherer, "Dark plasmon modes in symmetric gold nanoparticle dimers illuminated by focused cylindrical vector beams," J. Phys. Chem. C 122, 27662-27672 (2018). https://doi.org/10.1021/acs.jpcc.8b10415
  23. Y. Bai, M. Dong, M. Zhang, and Y. Yang, "Properties of a tightly focused circularly polarized anomalous vortex beam and its optical forces on trapped nanoparticles," Nanoscale Res. Lett. 14, 252 (2019).
  24. J. Chen, L. Yu, C. Wan, and Q. Zhan, "Spin-orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket," ACS Photonics 9, 793-799 (2022).
  25. A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart, "Multiple rings formation in cascaded conical refraction," Opt. Lett. 38, 1455-1457 (2013). https://doi.org/10.1364/OL.38.001455
  26. H. Zhang, S. Hasegawa, H. Takahashi, H. Toyoda, and Y. Hayasaki, "In-system optimization of hologram for highstability parallel laser processing," Opt. Lett. 45, 3344-3347 (2020). https://doi.org/10.1364/ol.392578
  27. M.-S. Kim, T. Scharf, and H. P. Herzig, "Amplitude and phase measurements of highly focused light in optical data storage systems," Jpn. J. Appl. Phys. 49, 08KA03 (2010).
  28. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, "Spin-to-orbital angular momentum conversion in a strongly focused optical beam," Phys. Rev. Lett. 99, 073901 (2007).
  29. D. N. Pattanayak and G. P. Agrawal, "Representation of vector electromagnetic beams," Phys. Rev. A 22, 1159-1164 (1980). https://doi.org/10.1103/PhysRevA.22.1159
  30. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical vector beams," Opt. Express 7, 77-87 (2000). https://doi.org/10.1364/OE.7.000077
  31. D. Li, X. Mei, and F. Wu, "Generation of non-diffracting Bessel-Gauss like beam by elliptical Gauss beam," High Power Laser and Particle Beams 26, 051017 (2014).
  32. K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, and Y. P. Li, "Vector-vortex Bessel-Gauss beams and their tightly focusing properties," Opt. Lett. 36, 888-890 (2011). https://doi.org/10.1364/OL.36.000888
  33. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system," Proc. R. Soc. Lond. 253, 358-379 (1959).
  34. Z. Man, C. Min, S. Zhu, and X.-C. Yuan, "Tight focusing of quasi-cylindrically polarized beams," J. Opt. Soc. Am A 31, 373-378 (2014). https://doi.org/10.1364/JOSAA.31.000373
  35. S. Ding, Y. Li, Z. Li, G. Wang, J. Xu, Y. Li, X. Dong, and X. Gao, "Focal shift of an axisymmetric Bessel-Gaussian beam under Airy mixing modulation," Appl. Opt. 59, 3673-3681 (2020). https://doi.org/10.1364/ao.388065
  36. E. M. El Halba, L. Ez-zariy, M. Boustimi, and A. Belafhal, "Focus shaping of cylindrically polarized Bessel-Gaussian beam modulated by Bessel gratings by a high numerical aperture objective," Opt. Quantum Electron. 49, 210 (2017).
  37. Z. Man, C. Min, L. Du, Y. Zhang, S. Zhu, and X. Yuan, "Subwavelength sized transversely polarized optical needle with exceptionally suppressed side-lobes," Opt. Express 24, 874-882 (2016). https://doi.org/10.1364/OE.24.000874
  38. X. Weng, Y. Miao, G. Wang, Q. Zhan, X. Dong, J. Qu, X. Gao, and S. Zhuang, "Propagable optical vortices with natural noninteger orbital angular momentum in free space," Adv. Photonics Res. 4, 2200094 (2023).
  39. X. Weng, Y. Miao, Q. Zhang, G. Wang, Y. Li, X. Gao, and S. Zhuang, "Extraction of inherent polarization modes from an m-order vector vortex beam," Adv. Photonics Res. 3, 2100194 (2022).