DOI QR코드

DOI QR Code

An Investigation of the Terahertz Absorption Characteristics of a Graphene Oxide Aqueous Solution Using Microfluidic Technology

  • Ningyi Cai (Department of Physics, Capital Normal University) ;
  • Boyan Zhang (Department of Physics, Capital Normal University) ;
  • Qinghao Meng (Department of Physics, Capital Normal University) ;
  • Siyu Qian (Department of Physics, Capital Normal University) ;
  • Bo Su (Department of Physics, Capital Normal University) ;
  • Hailin Cui (Department of Physics, Capital Normal University) ;
  • Shengbo Zhang (Department of Physics, Capital Normal University) ;
  • Cunlin Zhang (Department of Physics, Capital Normal University)
  • Received : 2023.01.20
  • Accepted : 2023.03.01
  • Published : 2023.04.25

Abstract

The vibratory and rotational levels of many biological macromolecules lie in the terahertz (THz) band, which means that THz techniques can be used to identify and detect them. Moreover, since the biological activity of most biomolecules only becomes apparent in aqueous solution, we use microfluidic technology to study the biological properties of these biomolecules. THz time-domain spectroscopy was used to study the THz absorption characteristics of graphene oxide (GO) aqueous solution at different concentrations and different exposure times in fixed electric or magnetic fields. The results show that the spectral characteristics of the GO solution varied with the concentration: as the concentration increased, the THz absorption decreased. The results also show that after placing the solution in an external electric field, the absorption of THz first increased and then decreased. When the solution was placed in a magnetic field, the THz absorption increased with the increase in standing time. In this paper, these results are explained based on considerations of what is occurring at the molecular scale. The results of this study provide technical support for the further study of GO and will assist with its improved application in various fields.

Keywords

Acknowledgement

The authors would like to thank Enago for providing English proofreading.

References

  1. X.-J. Feng, W.-X. Huang, Q.-W. Shi, Y. Jiang, F. Yue, and J.-Y. Zhang, "Terahertz transmission properties of antimony doped tin oxide powder," High Power Laser and Particle Beams 25, 1569-1572 (2013). https://doi.org/10.3788/HPLPB20132506.1569
  2. B. Li, D. Zhang, and Y. Shen, "Study on terahertz spectrum analysis and recognition modeling of common agricultural diseases," Spectrochim. Acta A 243, 118820 (2020).
  3. W. Wang, G.-H. Qiu, S.-B. Pan, R.-R. Zhang, J.-L. Han, Y.- K. Wang, Y. Guo, and M.-X. Yu, "Terahertz absorption and molecular vibration characteristics of PA66 polymer material," Spectrosc. Spectr. Anal. 40, 2702-2706 (2020).
  4. J. Zhong, T. Mori, Y. Fujii, T. Kashiwagi, W. Terao, M. Yamashiro, H. Minami, M. Tsujimoto, T. Tanaka, H. Kawashima, J. Ito, M. Kijima, M. Iji, M. M. Watanabe, and K. Kadowaki, "Molecular vibration and Boson peak analysis of glucose polymers and ester via terahertz spectroscopy," Carbohydr. Polym. 232, 115789 (2020).
  5. H. Oka, "Direct excitation of molecular vibrational motion by intense broadband THz pulses," J. Phys. B 52, 025503 (2019).
  6. Y. Sun, X. Lu, P. Du, P. Xie, and R. Ullah, "Terahertz spectroscopy of bisphenol "A", "AF", "S", "E" and the interrelationship between their molecular vibrations," Spectrochim. Acta A 209, 70-77 (2018). https://doi.org/10.1016/j.saa.2018.09.051
  7. B. Li, X. Zhao, Y. Zhang, S. Zhang, and B. Luo, "Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy," Comput. Electron. Agric. 170, 105239 (2020).
  8. F. Y. Lian, H. Y. Ge, X. J. Ju, Y. Zhang, and M. X. Fu, "Quantitative analysis of trans fatty acids in cooked soybean oil using terahertz spectrum," J. Appl. Spectrosc. 86, 917-924 (2019). https://doi.org/10.1007/s10812-019-00916-z
  9. S. Nakajima , S. Horiuchi, A. Ikehata, and Y. Ogawa, "Determination of starch crystallinity with the Fourier-transform terahertz spectrometer," Carbohydr. Polym. 262, 117928 (2021).
  10. Z. Wang, Y. Peng, C. Shi, L. Wang, X. Chen, W. Wu, X. Wu, Y. Zhu, J. Zhang, G. Cheng, and S. Zhuang, "Qualitative and quantitative recognition of chiral drugs based on terahertz spectroscopy," Analyst 146, 3888-3898 (2021). https://doi.org/10.1039/D1AN00500F
  11. C.-H. Feng, C. Otani, Y. Ogawa, and J. F. Garcia-Martin, "Evaluation of properties in different casings modified by surfactants and lactic acid using terahertz spectroscopy-A feasibility study," Food Control 127, 108152 (2021).
  12. S. C. Terry, J. H. Jermanand, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," IEEE Trans. Electron. Devices 26, 1880-1886 (1979). https://doi.org/10.1109/T-ED.1979.19791
  13. S. Alfihed, J. F. Holzman, and I. G. Foulds, "Developments in the integration and application of terahertz spectroscopy with microfluidics," Biosens. Bioelectron. 165, 112393 (2020).
  14. F. Ahmed, A. Mahana, K. Taniizumi, J. Wang, K. Sakai, and T. Kiwa, "Terahertz imaging technique for monitoring the flow of buffer solutions at different pH values through a microfluidic chip," Jpn. J. Appl. Phys. 60, 027003 (2021).
  15. F. Mouhat, F.-X. Coudert, and M.-L. Bocquet, "Structure and chemistry of graphene oxide in liquid water from first principles," Nat. Commun. 11, 1566 (2020).
  16. L. Rong, Y. Fu, Q. Li, X. Yang, Y. Li, L. Yan, L. Wang, and W. Wu, "Effects of the surface charge of graphene oxide derivatives on ocular compatibility," Nanomaterials 12, 735 (2022).
  17. X. Wang, W. Gui, F. Duan, and X. Mu, "Effect of functional groups on the adsorption of graphene oxide on iron oxide surface," Surf. Sci. 716, 121982 (2022).
  18. N. M. Huang, H. N. Lim, C. H. Chia, M. A. Yarmo, and M. R. Muhamad, "Simple room-temperature preparation of highyield large-area graphene oxide," Int. J. Nanomed. 6, 3443-3448 (2011).
  19. A. Sengupta, A. Bandyopadhyay, B. F. Bowden, J. A. Harrington, and J. F. Federici, "Characterisation of olefin copolymers using terahertz spectroscopy," Electron. Lett. 42, 1 (2006).
  20. K. Qian, Z.-C. Bai, R. Wu, J.-H. Wang, B. Su, Y.-W. Wen, and C.-L. Zhang, "Terahertz transmission characteristics of electrolyte solution," Spectrosc. Spectr. Anal. 41, 2018-2022 (2021).
  21. Q. Sun, "The effects of dissolved hydrophobic and hydrophilic groups on water structure," J. Solution Chem. 49, 1473-1484 (2020). https://doi.org/10.1007/s10953-020-01035-6
  22. C. Ding, B. Su, G. Wang, Q. Meng, J. Wang, and C. Zhang, "Terahertz absorption characteristics of the sodium carboxymethyl cellulose colloid based on microfluidic technology," Int. J. Opt. 2021, 5555325 (2021).
  23. C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, "Tunable photoluminescence from graphene oxide," Angew. Chem. Int. Ed. 51, 6662-6666 (2012). https://doi.org/10.1002/anie.201200474
  24. O. O. Ekiz, M. Urel, H. Guner, A. K. Mizrak, and A. Dana, "Reversible electrical reduction and oxidation of graphene oxide," ACS Nano 5, 2475-2482 (2011). https://doi.org/10.1021/nn1014215
  25. Y. Gao, R.-Y. Chen, R.-X. Wu, G.-F. Zhang, and S.-T. Jia, "The electric field induced polarization dynamics of graphene oxide," Acta Phys. Sin. 62, 233601 (2013).
  26. B. Mohammad and D. M. Tehrani, "Effect of magnetic field on gas hydrate formation," Nat. Gas Indust. B. 9, 240-245 (2022). https://doi.org/10.1016/j.ngib.2022.01.002
  27. F. W. Han, W. Xu, L. L. Li, and C. Zhang, "A generalization of the Drude-Smith formula for magneto-optical conductivities in Faraday geometry," J. Appl. Phys. 119, 245706 (2016).