• Title/Summary/Keyword: Material testing machine

Search Result 329, Processing Time 0.028 seconds

A Study on Tensile Strength According to Various Output Conditions of PLA+ Materials Using 3D Printing (3D 프린팅을 이용한 PLA+ 소재의 다양한 출력 조건에 따른 인장강도에 대한 연구)

  • Na, D.H.;Kim, S.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2022
  • 3D printing products manufactured by material extrusion are used in many industrial fields recently. However, these products are difficult to use in the field due to their low tensile strengths. In order to solve this problem, research on improving the tensile strength of the output using a 3D printer has been continuously conducted. In this study, we performed a tensile test using Universal Testing Machine according to infill pattern, nozzle temperature, bed temperature, and printing speed conditions. Results revealed that tensile specimen of concentric shape had the highest tensile strength in infill pattern condition and that the tensile strength increased linearly with increasing nozzle and bed temperatures. However, the tensile strength decreased with increasing printing speed. Consequently, we confirmed that tensile strength could be increased and decreased depending on output conditions of 3D printing.

Evaluation on Effect of Hole Machining for Application of M1.0 Subminiature Screw to CFRP Laminate Using FEM (FEM을 이용한 M1.0 초소형 나사 적용을 위한 CFRP 적층판의 홀 가공 영향평가)

  • Kim, Dae Young;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being "eco-friendly" and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.

Mechanical Behaviors and Characterization of Electrospun Polysulfone/Polyurethane Blend Nonwovens

  • Cha Dong-Il;Kim Kwan-Woo;Chu Gong-Hee;Kim Hak-Yong;Lee Keun-Hyung;Bhattarai Narayan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.331-337
    • /
    • 2006
  • In the present study we investigated the relationship between the morphology and mechanical properties of electrospun polysulfone (PSF)/polyurethane (PU) blend nonwovens, by using the electrospinning process to prepare three types of electrospun nonwovens: PSF, PU and PSF/PU blends. The viscosity, conductivity and surface tension of the polymer solutions, were measured by rheometer, electrical conductivity meter and tensiometer, respectively. The electrospun PSF/PU blend nonwovens were characterized by scanning electron microscopy (SEM) and with a universal testing machine. The SEM results revealed that the electrospun PSF nonwoven had a structure consisting of cross-bonding between fibers, whereas the electrospun PU nonwoven showed a typical, point-bonding structure. In the electrospun PSF/PU blend nonwovens, the exact nature of the point-bonding structure depended on the PU contents. The mechanical properties of the electrospun PSF/PU blend nonwoven were affected by the structure or the morphology. With increasing PU content, the mechanical behaviors, such as Young's modulus, yield stress, tensile strength and strain, of the electrospun PSF/PU blend nonwovens were by up to 80%.

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF

Test Method for Composites Material Properties under High Temperature(I) (복합재의 고온 특성 평가를 위한 시험 기법연구(I))

  • Kil, Hyung-Bae;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of high-temperature on the flexural modulus of epoxy resin were evaluated using universal testing machine with 3-point bending and dynamic mechanical analyzer. Temperatures of $30^{\circ}C$, $100^{\circ}C$, and $140^{\circ}C$ were considered for flexural test. The specimens having aspect ratio of 16, 32, and 40 were used. The results of storage modulus from DMA were similar to those from flexural test along with given temperatures. It is found that the flexural modulus increased with increasing aspect ratio and the specimen having aspect ratio of above 32 would be suitable for the evaluation of composite material properties under high temperature condition.

  • PDF

Surface characteristics and bonding performance of polymer restorative materials for dental CAD/CAM systems (치과 캐드캠 시스템에서 사용되는 고분자 수복재료들의 표면특성과 접착양상)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.203-209
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the mechanical properties of polymer prosthetic and restorative materials for dental CAD/CAM using two test method; surface characteristics and shear bond strength. Methods: Commercialized CAD/CAM polymer blanks were investigated; One kinds of PMMA, and one PEKK blanks. A total of 20 PMMA and PEKK specimens were prepared, and each group was divided into 10 specimens. Average surface roughness was observed under surface profilometer. The contact angle was measured with a surface electrooptics. The bond strength was evaluated by a universal testing machine at a crosshead speed of 5mm/min. The data were statistically analyzed using independent t-test and Fisher's exact test(P<0.05). Results: The PMMA and PEKK group showed a significant difference in the shear bond strength with the composite resin(P<0.05). The surface roughness of the PEKK group was higher than that of the PMMA group. The fracture mode were observed in PEKK groups with 50% showing adhesive remnant index score. Conclusion: PEEK is used as substructure material and composite veneering material is applied. PEKK resins will contribute to the development of successful products that will provide structural and aesthetic satisfaction.

The Effects of the Microstructures on the Fatigue Crack Propagation Behaviors of Cast Irons (주철의 피로전파거동에 미치는 미세조직의 영향)

  • Kim, Sug-Won;Park, Jin-Sung;Lee, Hyung-Chul;Kim, Dong-Keun;Woo, Kee-Do
    • Journal of Korea Foundry Society
    • /
    • v.25 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • This study aims to investigate the effects of the microstructures and nodule type on the fatigue characteristics of cast iron. Fatigue tests were carried out in tension-tension mode using a servo-hydraulic testing machine with load control mode operating at a frequency of 15 Hz. The tests were conducted at stress ratio R=Kmin/Kmax, of 0.1. Initial crack ${\Dalta}K$ values were highly performed with increase in tensile strength of DCI fatigue specimens. ${\Dalta}K_{th}$ region, fatigue crack propagation was primarily advanced through cell boundary and in periphery of near nodule. Fatigue crack propagation rate of D2 consisted with 2Phase(Ferrite+Pearlite) was slow due to crack closure enhanced by crack deflection and occurred crack branching. The generation of crack branch was occurred due to interaction of crack-nodule. At Threshold and Paris zone, the fractographs of the fatigue fracture surface for DCI show typical striations of a ductile fracture and isolated cleavage planes near graphite. The effect of microstructure on fatigue crack propagation of GC strongly depends on the type of flake. The generation of crack branch occurred due to interaction of crack-nodule. The fractographs of the fatigue fracture surface for GC show cleavage plane along the flake graphite.

THE EFFECT OF CASTING MACHINE AND INVESTMENT ON THE CASTABILITY OF TITANIUM ALLOY (주조기와 매몰재의 성분변화에 따른 티타늄의 주조성에 관한 연구)

  • Chung, Da-Woon;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.654-664
    • /
    • 2006
  • Statement of problem: There has been a eat interest in the use of titanium for fixed and removable prostheses in recent because of its excellent biocompatibility. However, the melting temperature and chemical reactivity of titanium necessities casting system different from those used in conventional casting. The current titanium casting systems are based on an electric-arc design for melting the metal in an argon atmosphere and its exclusive investment. Despite the new development in Ti casting system, inadequate mold filling and internal porosity are frequently observed casting defects. Purpose : The purposes of this study were to compare the castibility and reaction layer of the casting titanium under the two casting machines and their investment condition. Material and method: coping and machine-milled titanium coping according to the casting methods and the marginal configurations. The total 28 specimens were used, and these are divided into 4 groups according to 2 casting machines and 2 investments. The castings were analyzed using x-ray microanalysis and microhardness testing. The reaction layer between margin of titanium casting and the investments was observed and analyzed with scanning electron microscope. Result: 1. Castabiliy of casting titanium specimen was best in the group of centrifugal casting machine and Selevest $CB^{\circledR}$ and good that of Selevest CB and pressure differential casting machine, Rematitan plus and centrifugal casting machine, Rematitan plus and pressure differential casting machine in order. 2. There was no significanct correlation in titanium castability in respect of casting machine. However ANOVA indicated that Selevest $CB^{\circledR}$ groups had significantly better castability than Rematitan $plus^{\circledR}$ groups.(p<0.05) 3. There was a significant microhardness difference between centrifugal casting machine groups and pressure differential groups.(p<0.05) Titanium castings in centifugal groups had significantly harder than those in pressure differential groups. 4. The addition of zirconia decreased interfacial reactivity. Conclusion: above result revealed that of the castability of titanium casting specimens had little correlation in casting machines and was better in magnesia-based investment contained ZrO2 groups. However in order to practice casting titanium in clininic, its castability should be improved, also there should be more research on factor of castability so that long-span prothesis and removable partial denture metla frame may be casted completly.

Enhancement of Penetration by Using Mechenical Micro Needle in Textile Strain Sensor (텍스타일 스트레인 센서에 마이크로 니들을 이용한 전도성입자 침투력 향상)

  • Hayeong Yun;Wonjin Kim;Jooyong Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.45-52
    • /
    • 2022
  • Recently, interest in and demand for sensors that recognize physical activity and their products are increasing. In particular, the development of wearable materials that are flexible, stretchable, and able to detect the user's biological signals is drawing attention. In this study, an experiment was conducted to improve the dip-coating efficiency of a single-walled carbon nanotube dispersion solution after fine holes were made in a hydrophobic material with a micro needle. In this study, dip-coating was performed with a material that was not penetrated, and comparative analysis was performed. The electrical conductivity of the sensor was measured when the sensor was stretched using a strain universal testing machine (Dacell Co. Ltd., Seoul, Korea) and a multimeter (Keysight Technologies, Santa Rosa, CA, USA) was used to measure resistance. It was found that the electrical conductivity of a sensor that was subjected to needling was at least 16 times better than that of a sensor that was not. In addition, the gauge factor was excellent, relative to the initial resistance of the sensor, so good performance as a sensor could be confirmed. Here, the dip-coating efficiency of hydrophobic materials, which have superior physical properties to hydrophilic materials but are not suitable due to their high surface tension, can be adopted to more effectively detect body movements and manufacture sensors with excellent durability and usability.

A Study on the Physical Properties of a Compound Using the Crosslinking of Vinylized-mesoporous Silica and Regenerated Polyethylene (비닐화 실란이 도입된 메조포러스 실리카와 재생 폴리에틸렌의 가교결합을 이용한 컴파운드의 물성 연구)

  • Tae-Yoon Kim;Hyun-Ho Park;Chang-Seop Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.420-428
    • /
    • 2023
  • Crosslinking was introduced into vinylized-mesoporous silica and recycled polyethylene. By introducing a vinyl group into the mesoporous silica, it becomes a material capable of inducing cross-linking with non-polar polyethylene. By synthesizing vinylized-mesoporous silica and inducing crosslinking with recycled polyethylene, a recycled polyethylene composite with improved physical properties than existing recycled polyethylene was synthesized. In addition, even when a small amount is added according to the grade of recycled polyethylene using vinylized-mesoporous silica, the crosslinking reaction proceeds and all physical properties are improved. Four types of vinylized-mesoporous silica were synthesized, and the shape, microstructure, and functional groups were analyzed by TEM, BET, FT-IR, and XRD. Using vinylized-mesoporous silica, three types of compounds were blended by crosslinking reaction with recycled polyethylene. In order to confirm the presence or absence of crosslinking, analysis was performed using XPS and FT-IR, and physical properties such as tensile strength, elongation, flexural strength, and flexural modulus were confirmed using a universal testing machine. As a result, by applying vinylized-mesoporous silica to recycled polyethylene in various grades, the weak physical properties of existing recycled polyethylene were overcome. By applying the vinylized-mesoporous silica, recycled polyethylene composite material that overcomes the weak physical properties to the normal polyethylene, it shows the optimal physical property index that can be used commercially. Therefore, it is expected that it can potentially increase the use of recycled polyethylene and recycle resources.