• Title/Summary/Keyword: Material switching system

Search Result 81, Processing Time 0.024 seconds

입환 작업을 위한 RFID 실증 연구

  • Won, Jong-Un;Na, Hui-Seung;Jang, Yun-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.145-145
    • /
    • 2009
  • In this paper, we suggest how to adapt RFID system to train switching process, and then what we get the merit or problem. We analyze the train switching process to adapt RFID system on the process and have field test. The role of RFID system in train switching process is to automatically read car position information. The specification of the test system is 900MHz, and Gen2 passive tag. If we get the system which automatically read car position information in train switching yard, it prevents human errors and makes more reliability, the performance of train operation will grow up. Even though the environment of train switching yard is outdoors, the test result gives us the ability to adapt RFID system to train switching process and the process will be more simple.

  • PDF

Resistive Switching Characteristics of Hafnium Oxide Thin Films Sputtered at Room Temperature (상온에서 RF 스퍼터링 방법으로 증착한 Hafnium Oxide 박막의 저항 변화 특성)

  • Han, Yong;Cho, Kyoung-Ah;Yun, Jung-Gwon;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.710-712
    • /
    • 2011
  • In this study, we fabricate resistive switching random access memory (ReRAM) devices constructed with a Al/$HfO_2$/ITO structure on glass substrates and investigate their memory characteristics. The hafnium oxide thin film used as a resistive switching layer is sputtered at room temperature in a sputtering system with a cooling unit. The Al/$HfO_2$/ITO device exhibits bipolar resistive switching characteristics, and the ratio of the high resistance (HRS) to low resistance states (LRS) is more than 60. In addition, the resistance ratio maintains even after $10^4$ seconds.

A Study on The Reducing Harmonics of Static Var Compensator using PAM Inverter (PAM 인버터를 이용한 무효전력보상장치의 고조파 저감에 관한 연구)

  • Park, Hyun-Chul;Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1103-1106
    • /
    • 2002
  • This paper presents SVC which use PAM method and eliminate harmonics. Inverter is connected directly so that SVC improve output voltage waveform into 24 steps. Inverter output waveform THD is reduced to 6.89%. Leading control of reactive power generated in power system is possible. Snubber is added to reduce switching loss.

  • PDF

Development of Material Switching System for Microstructure with Multiple Material in Projection Microstereolithography (전사방식 마이크로 광 조형에서 복합 재료의 미세구조물 제작을 위한 수지 교한 시스템 개발)

  • Jo, Kwang-Ho;Park, In-Baek;Ha, Young-Myoung;Kim, Min-Sub;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.1000-1007
    • /
    • 2011
  • For enlarging the applications of microstereolithography, the use of diverse materials is required. In this study, the material switching system (MSS) for projection microstereolithography apparatus is proposed. The MSS consists of three part; resin level control, resin dispensing control, and vat level control. Curing characteristic of materials used in fabrication has been identified. Through repeated fabrication of test models, the critical fabrication error is investigated and a possible solution to this error is suggested. The developed system can be applied to improve the strength of microstructure and extended to fabricate an array of microstructures with multiple materials.

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer (저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성)

  • Kim, Yongwoo;Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

Detecting System of Moving Object Using Directional Antennae (지향성 안테나를 이용한 이동체 감지 시스템)

  • 이성필;김종수;윤여경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.101-104
    • /
    • 1996
  • A new detecting system for moving objects of coastal region has been designed by directional antenna and driving circuits. The designed system has been investigated by CAD for linear and planar antenna arrays of various radiating elements for antenna simulations and by P-spice of device simulations. For detecting the displacement of moving objects, we constructed four wideband dipole antenna, diode switching circuit, mixer, filter and amplifier. The results of antenna receiver were shown a possibility of distance measuring system through phase difference of radiation patterns in antenna simulation

  • PDF

A study on the auto-charging circuit of the battery power units using trigger characteristics of semiconductor device (반도체 스위칭 소자의 트리거 특성을 이용한 배터리 자동 충전회로에 관한 연구)

  • 김영민;황종선;박성진;임종연;송승호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.519-522
    • /
    • 2001
  • Recently, the battery charging technology and reducing technology of harmonics on AC input line are rising importantly according to increasing electrical facilities that it has been replaced battery with emergency power. In this study, I proposed that an auto-charging circuit of battery has low cost with simple-construction circuit, relative, harmonics reduction with diode tap-change method, high reliability of system for using characteristics of thyristor switching. In case of this circuit, convenience and reliability of maintenance of battery power units were more improved. 1 think that it is resulted in effect of prevention to shortening of battery life from over-charging and over-discharging and decrease of harmonics obstacle on AC input line.

  • PDF