• Title/Summary/Keyword: Material simulation

Search Result 3,719, Processing Time 0.028 seconds

Numerical Simulation of Water Quality Enhancement by Removal of Contaminated Bed Material (하상오염물 제거에 의한 수질개선효과 수치모델링)

  • Lee, Nam-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.349-357
    • /
    • 2011
  • This study has an objective to estimate effect on water-quality enhancement by removal of contaminated river-bed material using a two-dimensional numerical modeling in the Seonakdong River, the Pyunggang River and the Maekdo River. RMA2 and RMA4 models were used for flow and contaminant transport simulation, respectively. After the analysis of the effects of flow restoration plan for the Seonakdong River system made by Lee et al (2008), simulation have been performed about scenarios which contains operations of the Daejeo Gate, the Noksan Gate, the Makdo Gate (on planning), and the Noksan Pumping Station. Because there is no option for elution from bed sediment in the RMA4 model, a simple technique has been used for initial condition modification for elution. The analyses revealed that the effect on water quality improvement due to dredging of bed sediment seemed to be less than 10 % of the total effect. The most efficient measure for the water quality improvement of the river system was the linked operation of water-gates and pumping station.

The Analysis of Temperature and Electric Field due to Contact Failure in Power Substation (수변전설비에서 접점 불량에 따른 열 및 전계 분포 해석)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.307-311
    • /
    • 2016
  • Although there are existing Residual Current Protective Device (RCD) including detect electric leakage and elements such as short circuit and surge, the occurrence of incidents caused by electric faults, including fire, are still constant. The purpose of this study is to analyze the causes of accidents through the electric field distribution in the interpretation of the fault contact breaker. Simulation results by the arc fault has shown the convergence of temperature and electric field to the defect. Through their simulation results, the main cause of erosion phenomena in circuit breaker bar is the electric arc by concentration of electric field not due to dissolve by temperature.

Simulation Characteristics of 1200V SiC DMOSFET Devices (1200V급 SiC DMOSFET 제작을 위한 특성 Simulation)

  • Kim, Sang-Cheol;Joo, Sung-Jae;Kang, In-Ho;Bahng, Wook;Kim, Nam-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.99-100
    • /
    • 2009
  • 탄화규소를 이용한 1200V급 MOSFET 소자 제작을 위하여 특성 simulation을 수행하였다. 1200V 내압을 얻기 위해서 불순물 농도가 5E15/cm3이고 에피층의 두께가 12um인 상용 탄화규소 웨이퍼를 기준으로 하였으며 채널 저항을 줄이기 위해 채널길이를 $0.5{\mu}m$로 하였다. 게이트전압이 13V, 드레인 전압이 4V에서 specific on-resistance 값은 $12m\;{\Omega}cm^2$로 매우 우수한 특성을 보이고 있다. P-body의 표면 농도를 5E16/cm3 에서 1E18/cm3으로 변화시키면서 소자의 전기적 특성을 예측하였으며 실험 결과와 비교하여 특성 변수를 추출하였다.

  • PDF

An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications

  • Arun Samuel, T.S.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.247-253
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunnelling generation rate and thus we numerically extract the tunnelling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

The Compensation of Chromaticity Coordinates on Primary Color Reaction of Urine Strips (요분석 스트립의 정색반응에 대한 색도좌표 보정)

  • Kim, Jae-Hyung;Joo, Jin-Wook;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.320-323
    • /
    • 2001
  • A computer simulation was performed to distinguish quantitatively a color reaction in a urine analysis systems by using the spectral power distribution of LEDs. the spectral reflectance of a urine strip. and the spectral sensitivity of photodiode. The CIE tristimulus values and CIE chromaticity coordinates ware modified to be conformable with real color reactions in a urine strips. Results on color simulation showed a of real color in comparison with those obtained by Colorimeter CM2C(Color Savvy).

  • PDF

Simulation of Liquid Crystals Considering Flow Effect (흐름효과를 고려한 액정의 시뮬레이션)

  • Kim Hoon;Park Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • In this paper, We coupled fluid balance and director balance equation from Ericksen-Leslie's continuum theory and observed the motion of Liquid Crystal molecular. We simulated flow velocity and director distribution in which flow effect is considered in switching on and switching off state. We interpreted the dynamic response characteristic caused by the flow. As the result of the simulation, We could see the flow effect. In the case of Twisted Nematic(TN) cell, this flow caused abnormal twist temporarily in switching off state. We could prove that this abnormal twist is a direct cause of optical bounce phenomenon known well until now with the result of simulation. In addition, We analyzed the mechanism of the fast response due to flow in the case of Optically Compensated Bend(OCB) cell.

A study of characteristic of blank in the precision blanking process (정밀전단가공에서 소재특성에 관한 연구)

  • 정성재;이선봉;전영학;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.296-299
    • /
    • 2002
  • The precision blanking of thin sheet metal is important process on production of precision electronic machine parts such as IC leadframe. In the blanking process, the factors that friction coefficient, tool clearance, material properties are the most important factors in the precision blanking process, because these factors affect the sheared face of product, side forces to punch during blanking process and surface condition after blanking process. So, many investigations have been performed. But, the former studies did not take up the characteristic of material. In this paper, in order to investigate the characteristic of blank, such as K(strength coefficient) and n(strain hardening coefficient), on the sheared face of blank and the side force to punch, FE-simulation has been analyzed by means of DEFORM-2D. To obtain input Parameters on FE-simulation, tensile and friction test has been done.

  • PDF

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation (몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가)

  • Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

Simulation for characterization of high speed probe for measurement of single flux quantum circuits (단자속양자 회로 측정프로브의 특성 분석을 위한 시뮬레이션)

  • 김상문;김영환;최종현;조운조;윤기현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.11-15
    • /
    • 2002
  • High speed probe for measurement of sin91e flux quantum circuits is comprised of coaxial cables and microstrip lines in order to carry high speed signals without loss. For the impedance matching between coaxial cable and microstrip line, we have determined the dimension of the microstrip line with 50${\Omega}$ impedance by simulation and then have investigated the effect of line width and cross-sectional shape of signal line, dielectric material, thickness of soldering lead at the coaxial-to-microstrip transition Point, and the an91c between dielectric material and end part of the signal line on the characteristics of signal transmission of the microstrip line. From the simulation, we have found that these all parameter's had influenced on the characteristic of signal transmission on the microstrip line and should be reflected in fabricating high speed probe, We have also determined the dimension of coplanar waveguide to fabricate testing sample for performance test of high speed probe.