• Title/Summary/Keyword: Material dispersion

Search Result 763, Processing Time 0.023 seconds

Preparation of $TiB_2$ Dispersed Cu Alloy by Spark Plasma Sintering

  • Kim, Kyong-Ju;Lee, Gil-Geun;Park, Ik-Min
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.523-524
    • /
    • 2006
  • The $TiB_2$ dispersion strengthened copper alloy was attracted as thermal and electrical functional material for the high mechanical strength, high thermal stability and good conductivity of $TiB_2$. In the present study, the focus is on the synthesis of $TiB_2$ dispersed copper alloy by spark plasma sintering process using copper oxide and titanium diboride as raw materials. The mechanical, thermal and electrical properties of sintered bodies were discussed with the sintering parameters, and developed microstructure and phase of sintered bodies.

  • PDF

Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications

  • Kim, Tae Kyu;Noh, Sanghoon;Kang, Suk Hoon;Park, Jin Ju;Jin, Hyun Ju;Lee, Min Ku;Jang, Jinsugn;Rhee, Chang Kyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.572-594
    • /
    • 2016
  • As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.

Wave dispersion characteristics of porous graphene platelet-reinforced composite shells

  • Ebrahimi, Farzad;Seyfi, Ali;Dabbagh, Ali;Tornabene, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.99-107
    • /
    • 2019
  • Wave propagation analysis of a porous graphene platelet reinforced (GPLR) nanocomposite shell is investigated for the first time. The homogenization of the utilized material is procured by extending the Halpin-Tsai relations for the porous nanocomposite. Both symmetric and asymmetric porosity distributions are regarded in this analysis. The equations of the shell's motion are derived according to Hamilton's principle coupled with the kinematic relations of the first-order shear deformation theory of the shells. The obtained governing equations are considered to be solved via an analytical solution which includes two longitudinal and circumferential wave numbers. The accuracy of the presented formulations is examined by comparing the results of this method with those reported by former authors. The simulations reveal a stiffness decrease in the cases which porosity influences are regarded. Also, one must pay attention to the effects of longitudinal wave number on the wave dispersion curves of the nanocomposite structure.

Spectroscopic Ellipsometry Measurement and Modeling of Hydrogenated Amorphous Silicon (수소화된 비정질 실리콘의 타원편광분광분석 측정 및 모델링)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Spectroscopic ellipsometry is a powerful tool for analyzing optical properties of material. Ellipsometry measurement results is usually given by change of polarization state of probe light, so the measured result should be properly treated and transformed to meaningful parameters by transformation and modeling of the measurement result. In case of hydrogenated amorphous silicon, Tauc-Lorentz dispersion is usually used to model the measured ellipsometry spectrum. In this paper, modeling of spectroscopic ellipsometry result of hydrogenated amorphous silicon using Tauc-Lorentz dispersion is discussed.

NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.701-711
    • /
    • 2018
  • Herein, the thermo-magneto-elastic wave dispersion answers of functionally graded (FG) double-nanobeam systems (DNBSs) are surveyed implementing a nonlocal strain gradient theory (NSGT). The kinematic relations are derived employing the classical beam theory. Also, scale influences are covered precisely in the framework of NSGT. Moreover, Mori-Tanaka homogenization model is introduced in order to obtain the effective material properties of FG nanobeams. Meanwhile, effects of external forces such as thermal and Lorentz forces are included in this research. Also, based upon the Hamilton's principle, the Euler-Lagrange equations are developed; afterwards, these equations are incorporated with those of NSGT to reach the nonlocal governing equations of FG-DNBSs. Furthermore, according to an analytical approach, the governing equations are solved to obtain the wave frequencies and phase velocities of FG-DNBSs. At the end, some illustrations are rendered to clarify the influences of a wide range of involved parameters.

Variation of the Electrokinetic Potential and Surface Energy Profile of a Binary Mixture Dispersion with Mixing Ratio (이종혼합부유물질의 양에 따른 electrokinetic potential 및 surface energy profile의 변화 양상)

  • Kim, Hee-Jin;Jeong, Hye-Won;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.115-120
    • /
    • 2012
  • Different colloidal particles generally co-exist in the water and wastewater. Thus, there needs to identify practical electrokinetic characteristics of the particles, comparing with the case when each colloidal material is independently distributed. In this study, changes of overall zeta potential was examined through mixed dispersions of $TiO_{2}$ and $MnO_{2}$. The mixing ratios were classified into 3-type in order to distinguish the effects of the proportions of each particle from those of total concentration in colloidal suspensions. The types are single colloidal dispersions of $TiO_{2}$ and $MnO_{2}$ (1:0, 0:1), mixed dispersions at different ratios (0.75:0.25, 0.5:0.5, 0.25:0.75), and a mixed dispersion with doubled concentration (1:1), respectively. It showed that the overall variation of zeta potential as a function of pH was intensified in a colloidal dispersion with the ratio of 1:1. It was concerned that the double action of ion would contribute to this result. On the one hand, the zeta potentials of each colloidal dispersion commonly decreased at the state of strong acid and base under the influence of compression of the electric double layer. The changing patterns were also considered through calculating total interaction energy between colloidal particles based on DLVO theory and measuring turbidity of the colloidal dispersions.

A Study on Smart Real-time Atmospheric Dispersion System (지능형 실시간 대기확산 시스템에 관한 연구)

  • Oh, Jeong-Seok;Hyun, Ji-I;Bang, Hyo-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • It is more important to realize safety management, medium-large accident prevention and risk prediction as accident of industry facilities can generate enormous physical and human damage because most energy plant might handle toxic substance. Especially, atmospheric dispersion system, which is able to simulate situation, have been used for release accident of toxic substance since the accident can show different of dispersion range and velocity according to release material, storage facility and atmospheric status. However those systems have been used generally in design step of industry facility and are difficult to deal with release accident quickly. Although some researches and cases have been studied for using real-time atmospheric information, there are insufficient system for processing quickly release accident. This paper aims to develop real-time smart atmospheric dispersion system that can deal with release accident quickly by enhancing distinct characteristics and efficiency of energy plant, and select release time and area using intelligent algorithm as accident prevention type.

Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells (P3HT:PCBM 층 내 분산 가능한 금속 나노입자의 제조 및 이를 포함한 고분자 태양전지 소자의 특성에 관한 연구)

  • Kim, Min-Ji;Choi, Gyu-Chae;Kim, Young-Kuk;Kim, Yang-Do;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.

A Study on Dispersion Copolymerization of Styrene/n-Butylmethacrylate and Alumina (스티렌/노말 부틸 메타크릴레이트와 알루미나의 분산 공중합에 관한 연구)

  • Bang, Hyun-Su;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.549-554
    • /
    • 2008
  • In order to synthesize polymer particle containing inorganic material, styrene and n-butylmethacrylate were copolymerized with alumina by dispersion polymerization. The weight ratio of styrene to n-butylmethacrylate was 3 : 1. A poly(N-vinyl pyrrolidon) was added as stabilizer. 2,2'-AzobisCisobutyronitrile) and 3-methacryloxypropyl trimethoxysilane were used as initiator and coupling agent, respectively. The weight ratio of 70 : 30 of isopropanol to distilled water was used as dispersion medium. According to the TEM measurement, we could confirm that alumina was dispersed into the polymer particle. The increase 'of concentration of alumina resulted in enhancement of particle size, but decreased its distribution. By the XRD method, it was found that the increase of alumina concentration showed the increase of intensity in peak and the increased 2$\theta$ value. From the TGA measurement, the increase of alumina concentration caused high heat resistance of the polymer. With respect to the type of initiator, the longer half life of initiator, the smaller particle size. We also found that the increase of particle stabilizer concentration made the decreased of particle size due to the accelerated generation of polymer particle in the early stage of reaction.

The Group Velocity of Lamb Wave Generated by the one Source in Unidirectional Laminated Composite Plates (일방향 적층 복합재료 판에서 한 음원에서 발생된 램파의 군속도)

  • Lee Jeong-Ki;Rhee Sang-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • The elastic waves in a plate are dispersive waves due to the characteristics of Lamb waves. However, S0 symmetric mode is less dispersive in the frequency region below the first cut-off frequency. The wave Propagation velocities vary with the direction in anisotropic plates such as Carbon Fiber Reinforced Plastic (CFRP) Plates. The wave vector direction and energy flow vector direction are same in isotropic plates. However, the wave vector direction same as the phase velocity direction is not in accordance with the energy flow direction same as the group velocity direction in anisotropic plates. In this study. the dispersion curves or the phase velocity from anti-symmetric and symmetric Lamb wave dispersion equation are calculated for unidirectional laminated composite plate. Slowness surface is sketched using phase velocity under the first cut-off frequency. The direction and magnitude of group velocity are corrected with this slowness surface. The measured group velocities are in good agreement with the corrected group velocity curve except near the fiber direction zone which is called the cusp region.