DOI QR코드

DOI QR Code

Spectroscopic Ellipsometry Measurement and Modeling of Hydrogenated Amorphous Silicon

수소화된 비정질 실리콘의 타원편광분광분석 측정 및 모델링

  • Kim, Ka-Hyun (Division of Energy & Optical Technology Convergence, Cheongju University)
  • 김가현 (청주대학교 에너지광기술융합학부)
  • Received : 2019.01.17
  • Accepted : 2019.01.30
  • Published : 2019.02.28

Abstract

Spectroscopic ellipsometry is a powerful tool for analyzing optical properties of material. Ellipsometry measurement results is usually given by change of polarization state of probe light, so the measured result should be properly treated and transformed to meaningful parameters by transformation and modeling of the measurement result. In case of hydrogenated amorphous silicon, Tauc-Lorentz dispersion is usually used to model the measured ellipsometry spectrum. In this paper, modeling of spectroscopic ellipsometry result of hydrogenated amorphous silicon using Tauc-Lorentz dispersion is discussed.

Keywords

TOONB4_2019_v39n1_11_f0001.png 이미지

Fig. 1 Schematic diagram of ellipsometry measurement

TOONB4_2019_v39n1_11_f0002.png 이미지

Fig. 2 Schematic diagram of Lorentz oscillator

TOONB4_2019_v39n1_11_f0003.png 이미지

Fig. 4 Modeled dielectric functions, ε1 and ε2 of hydrogenated amorphous silicon, deduced from the result of Fig. 3 and Table 1

TOONB4_2019_v39n1_11_f0007.png 이미지

Fig. 3 (a) Spectroscopic ellipsometry measurement and modeling result of hydrogenated amorphous silicon deposited on a Corning XG glass, and (b) optical model of the sample

TOONB4_2019_v39n1_11_f0008.png 이미지

Fig. 5 (a) Spectroscopic ellipsometry measurement and modeling result of p-type hydrogenated amorphous silicon carbon deposited on a Corning XG glass

Table 1 Fitting parameters of Tauc-Lorentz model shown in Fig. 3

TOONB4_2019_v39n1_11_t0001.png 이미지

Table 2 Fitting parameters of Tauc-Lorentz model shown in Fig. 5

TOONB4_2019_v39n1_11_t0002.png 이미지

References

  1. Fontcuberta i Morral, A., Roca i Cabarrocas, P., and Clerc, C., Structure and Hydrogen Content of Polymorphous Silicon Thin Films Studied by Spectroscopic Ellipsometry and Nuclear Measurements, Physical Review B, Vol. 69, p. 125307, 2004. https://doi.org/10.1103/PhysRevB.69.125307
  2. Ahn, I.-S., Ellipsometry, Publication Center in Hanyang University, ISBN : 89-7218-138-2, 2002.
  3. Tompkins, H. G. and Irene, E. A. (Ed.), Handbook of Ellipsometry, William Andrew Publishing, ISBN : 0-8155-1499-9, 2005.
  4. Tiwald, T. E., Thompson, D. W., Woollam, J. A. , Paulson, W., and Hance, R., Application of IR Variable Angle Spectroscopic Ellipsometry to the Determination of Free Carrier Concentration Depth Profiles, Thin Solid Films, Vol. 313-314, p. 661, 1998. https://doi.org/10.1016/S0040-6090(97)00973-5
  5. Ghosh, G., Sellmeier Coefficients and Dispersion of Thermo-optic Coefficients for Some Optical Glasses, Applied Optics, Vol. 36, p. 1540, 1997. https://doi.org/10.1364/AO.36.001540
  6. Levi, A. F. J., Essential Classical Mechanics for Device Physics, Chap. 5 "The Lorentz oscillator model", Morgan & Claypool Publishers, ISBN : 978-1-6817-4412-4, 2016.
  7. Jellison Jr., G. E. and Modine, F. A., Parameterization of the Optical Functions of Amorphous Materials in the Interband Region, Applied Physics Letters, Vol. 69, p. 371, 1996. https://doi.org/10.1063/1.118064
  8. Jellison, Jr., G. E., Modine, F. A. Doshi, P., and Rohatgi, A., Spectroscopic Ellipsometry Characterization of Thin-film Silicon Nitride, Thin Solid Films, Vol. 313-314, p. 193, 1998. https://doi.org/10.1016/S0040-6090(97)00816-X
  9. Cody, G. D., Urbach Edge, Disorder, and Absorption On-set in a-Si:H, Materials Research Society Proceedings, Vol. 862, p. A1.3.1, 2005. https://doi.org/10.1557/PROC-862-A13.1
  10. Cody, G. D. Brooks, B. G., and Abeles, B., Optical Absorption Above the Optical Gap of Amorphous Silicon Hydride, Sol. Energy Mater. Vol. 8, p. 231, 1982. https://doi.org/10.1016/0165-1633(82)90065-X
  11. Tawada, Y., Okamoto, H., and Hamakawa, Y., Properties and Structure of a‐SiC:H for High‐efficiency a‐Si Solar Cell, Applied Physics Letters, Vol. 39, p. 237, 1981. https://doi.org/10.1063/1.92692

Cited by

  1. Deep Neural Network Modeling of Multiple Oxide/Nitride Deposited Dielectric Films for 3D-NAND Flash vol.29, pp.6, 2019, https://doi.org/10.5757/asct.2020.29.6.190