• Title/Summary/Keyword: Material Selection

Search Result 960, Processing Time 0.027 seconds

Risk Evaluation of Scrubber Deposition By-Products in the Diffusion Process (Diffusion 공정 내 스크러버 퇴적 부산물의 위험성 평가)

  • Minji Kim;Jinback Lee;Seungho Jung;Keunwon Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.76-83
    • /
    • 2024
  • In the semiconductor manufacturing process, the Diffusion process generates various reactive by-products. These by-products are deposited inside the pipes of post-processing and exhaust treatment systems, posing a potential risk of substantial dust explosions. In this study, three methods material verification, selection of analysis samples, and risk analysis were employed to address the substances produced during the Diffusion process. Among the materials handled in the Diffusion process, ZrO2, TEOD, and E-DEOS were identified as raw material capable of generating by-product dust. Test for Minimum Ignition Energy and dust explosion were conducted on the by-products collected from each processing facility. The results indicated that, in the case of MIE, none of the by-products ignited. However, the dust explosion test revealed that ZrO2 exhibited a maximum pressure of 7.6 bar and Kst value of 73.3 bar·m/s, its explosive hazard. Consequently, to mitigate such risks in semiconductor processes, it is excessive buildup.

Immediate Drug Release Enhancement of Nateglinide Using Fumaric Acid (푸마르산을 이용한 나테글리니드 함유 속방출형 제형의 약물방출 개선에 관한 연구)

  • Lee, Sung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.506-512
    • /
    • 2017
  • The purpose of this study was to improve release rate and bioavailability of nateglinide formulation. Polymorphism selection and particle size control were performed to enhance formulation dissolution rate, and a pH modifier was included in the formulation to overcome pH-dependent solubility of nateglinide. The enhanced dissolution rate was characterized by using a dissolution test. The results showed that H-type raw material had a higher dissolution rate than that of B-type raw material. There was 6.2% difference in dissolution between the two materials at 60 min. With regard to particle size, raw material with a $1.13{\mu}m$ particle size showed a 20% faster release rate than that of raw material with a $2.28{\mu}m$ particle size. Furthermore, fumaric acid was included in formulation as a pH modifier. That addition produced a greater than 50% improvement in dissolution rate. In conclusion, dissolution rate of nateglinide can be enhanced by optimizing its polymorphism and particle size; moreover, a synergistic effect on the enhancement of dissolution rate is obtained by including fumaric acid, a pH modifier, in the formulation.

Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting (철근콘크리트 패널의 FRP 보강에 의한 방폭 성능 향상에 관한 실험 연구)

  • Ha, Ju-Hyung;Yi, Na-Hyun;Kim, Sung-Bae;Choi, Jong-Kwon;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Recently, FRP usage for strengthening RC structures in civil engineering has been increasing. Especially, the use of FRP to strengthen structures against blast loading is growing rapidly. To estimate FRP retrofitting effect under blast loading, blast tests with nine $1,000{\times}1,000{\times}150\;mm$ RC panel specimens, which were retrofitted with carbon fiber reinforced polymer (CFRP), Polyurea, CFRP with Poly-urea and basalt fiber reinforced polymer (BFRP) have been carried out. The applied blast load was generated by the detonation of 15.88 kg ANFO explosive charge at 1.5 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included central deflection and strains at steel, concrete, and FRP surfaces. The failure mode of each specimen was observed and compared with a control specimen. From the test results, the blast resistance of each retrofit material was determined. The test results of each retrofit material will provide the basic information for preliminary selection of retrofit material to achieve the target retrofit performance and protection level.

An analysis of the Domestic Interior Materials as the Ecological Design Aspects (친환경측면에서 본 국내 실내건축자재의 현황 조사 및 분석)

  • Chun Jin-Hie;Kim Jung-Ah
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.133-144
    • /
    • 2006
  • According to the latest report by the Customer Protection Board, those who moved into newly constructed buildings are complaining about unidentified pains, asking for more careful selection of constructive materials for prevention of such potential problems. It is internationally recognized today that ecological materials can serve a significant factor for users' health, environmental protection and better industrial competitiveness. This study examined eco-design aspects of each interior material through web site search, in order to help customers learn about and capitalize on eco materials in a proper manner. As a result, 1. It turned out that the domestic industry are giving an impetus to releasing new eco items focusing on lower VOCs emission or addition of functional components as part of the marketing strategy. However, it is recommended that company understand significance of life cycle, and produce eco-concept materials. 2. The reliable standard for choosing the domestic material is EL, HB, GR marks. It is desirable to enhance recycling technologies and expand the sustainable consumption. customer class, since many recycled items are not developed. 3. The sourcing is a vulnerable part in terms of the concept of being environment-friendly material. Therefore, many manufacturers should design the easy knock-down products and produce the good items using recycled materials instead of new raw materials. Also solutions for making the energy from burning material should be studied. 4. The guidebook or manual with correct information about eco-materials is required to promote production and consumption with sustainable concept. 5. Many manufacturers are emphasizing ecological materials for customers, but some of them intended to disrupt customers' proper selection by promoting even unverified items to be environment-friendly.

  • PDF

Sintered Metal Wicks Development for the High Performance Loop Heat Pipe(LHP) Systems

  • Choi, Jee-Hoon;Sung, Byung-Ho;Yoo, Jung-Hyun;Seo, Min-Whan;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2136-2141
    • /
    • 2007
  • The Loop Heat Pipe(LHP) system uses capillary forces so as to pump the working fluid from heat acquisition to heat rejecting systems. The performance of the LHP systems depends mainly upon the operating performance of the wick structure. The capillary pressure increases with decreasing the pore size of the wick structure. By the way, the wick structure's permeability decreases with decreasing the pore size and the porosity. To obtain an ideal wick, the wick structure should possess several characteristics such as the small pore size, high porosity and chemical compatibility with working fluid. Sintered metal wicks have been mainly used as the capillary wick structure mounted in LHP because of the fact that the sintered metal wick has some advantages like convenient selection of wick material, smaller pore size and so on as well as high reliability. In this study, sintered metal wicks were developed to meet required several parameters to design the high performance LHP systems for obtaining even more effective cooling technologies.

  • PDF

Review on Electric-field Transparent Conduct Electrodes Based on Nanomaterials (나노 소재 기반의 전기장 투과 전극에 관한 연구동향)

  • Lee, Jae Hyung;Shin, Jae Hyeok;Lee, Sang Il;Park, Won Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • The 'field-effect' underlies the operation of most conventional electronic devices. However, effective control and implementation of the field-effect in semiconductor devices are limited due to screening of the electric-field by conducting electrodes. Thus far, the electronic devices have necessarily been designed to avoid or minimize the electric-field screening effect. As an alternative approach to this, a new type of conducting electrodes which would be transparent to both visible light and electric-field while being electrically conductive have been developed. Here, we define these electrodes as 'electric-field transparent electrodes' and provide a review on related work. Particular attention is paid to the material selection and design strategies to enhance the electric-field transparency of the electrodes while maintaining good electrical conductivity and optical transparency. We then introduce potential applications of the electric-field transparent electrodes in electronic and optoelectronic devices.

Design and Development Status of a Thermal Protection System for a Spaceplane (우주비행기 열보호 시스템의 설계 및 개발 현황)

  • Yoon, Yong-Sik;Choi, Gi-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.79-85
    • /
    • 2018
  • The demand for the development of atmospheric entry vehicles, dealing with reentry and solar-system planet exploration, is increasing. Generally, atmospheric drag and heating accompany the entry into atmospheric air. Accordingly, the selection of the thermal protection materials and the design and application of the thermal protection system are very important. In this paper, the atmospheric entry environment and the type and characteristics of the thermal protection materials are discussed. The design and application status of a thermal protection system for spaceplanes are described.

Exploring Capabilities of BIM Tools for Housing Refurbishment in the UK

  • Kim, Ki Pyung;Park, Kenneth S
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.9-17
    • /
    • 2016
  • Currently whole-house refurbishment for substantial energy efficiency improvement of existing housing stock is needed to achieve the targeted 80% CO2 emission reduction. As whole-house refurbishment requires a larger capital investment for lower CO2 emission, the simultaneous use of Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methodologies are recommended to generate affordable refurbishment solutions. However, two methodologies are difficult to use due to a lack of proper LCC and LCA datasets. As a response to the current problems, many researchers explore potentials in Building Information Modelling (BIM) to improve current construction practice. As a result, a BIM tool - IES IMPACT (Integrated Material Profile And Costing Tool) - has been introduced to the UK construction industry for simultaneous calculation of LCC and LCA. Thus, this research aims at examining the capability and limitation of the IES VE/IMPACT as a BIM tool for whole-house refurbishment. This research reveals that the IES VE/IMPACT is feasible for whole-house refurbishment by providing LCC and LCA information simultaneously for informed decision on refurbishment solution selection. This research shed lights on the current problems lying on the data exchange between two different BIM tools. It is revealed that additional efforts from construction professionals and industry are required to make reliable BIM objects library with LCC and LCA datasets.

An Experimental Study about the Measurement of the Thermal Properties of Phase Change Materials using T-history method (T-history 방법에 의한 잠열재의 열물성치 측정에 대한 실험적 연구)

  • Kang, Dong-Hoon;Peck, Jong-Hyeon;Park, Seung-Sang;Seo, Tae-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.226-231
    • /
    • 2001
  • The purpose of this paper is to propose the experimental method of thermal properties of Phase Change Materials (PCMs) by using T-history method. As far, in order to measure the heat of fusion and specific heat of PCMs, conventional thermal analysis methods such as DSC and DTA have been used. Because these methods test very small samples, thermal properties of samples are usually different from those of materials consisting of several components. For these reasons, T-history method, the simple measurement method of the heat of fusion and specific heat of PCMs have been performed. In this paper, we investigated the thermal properties of low temperature PCMs(below $0^{\circ}C$) under the charging process by using T-history method. The results are compared to those of DSC method. The T-history method will be useful for selection of the best PCM from lots of candidates and development of new PCMs.

  • PDF

Global Optimization of the Turning Operation Using Response Surface Method (선반가공공정에서 RSM을 이용한 가공공정의 포괄적 최적화)

  • Lee, Hyun-Wook;Kwon, Won-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.114-120
    • /
    • 2010
  • Optimization of the turning process has been concentrated on the selection of the optimal cutting parameters, such as cutting speed, feed rate and depth of cut. However, optimization of the cutting parameters does not necessarily guarantee the maximum profit. For the maximization of the profit, parameters other than cutting parameters have to be taken care of. In this study, 8 price-related parameters were considered to maximize the profit of the product. Regression equations obtained from RSM technique to relate the cutting parameters and maximum cutting volume with a given insert were used. The experiments with four combinations of cutting inserts and material were executed to compare the results that made the profit and cutting volume maximized. The results showed that the cutting parameters for volume and profit maximization were totally different. Contrary to our intuition, global optimization was achieved when the number of inserts change was larger than those for volume maximization. It is attributed to the faster cutting velocity, which decreases processing time and increasing the number of tool used and the total tool changing time.