• Title/Summary/Keyword: Material Reduction Rate

Search Result 474, Processing Time 0.027 seconds

Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate

  • Seo, Junyoung;Kim, Taekyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.209-216
    • /
    • 2018
  • Sapphire is a substrate material that is widely used in optical and electronic devices. However, the processing of sapphire into a substrate takes a long time owing to its high hardness and chemical inertness. In order to process the sapphire ingot into a substrate, ingot growth, multiwire sawing, lapping, and polishing are required. The lap grinding process using pellets is known as one of the ways to improve the efficiency of sapphire substrate processing. The lap grinding process ensures high processing efficiency while utilizing two-body abrasion, unlike the lapping process which utilizes three-body abrasion by particles. However, the lap grinding process has a high material removal rate (MRR), while its weakness is in obtaining the required surface roughness for the final polishing process. In this study, we examine the effects of free abrasives in lap grinding on the material removal characteristics of sapphire substrate. Before conducting the lap grinding experiments, it was confirmed that the addition of free abrasives changed the friction force through the pin-on-disk wear test. The MRR and roughness reduction rate are experimentally studied to verify the effects of free abrasive concentration on deionized water. The addition of free abrasives (colloidal silica) in the lap grinding process can improve surface roughness by three-body abrasion along with two-body abrasion by diamond grits.

Analysis of Multi-Pass Wet Wire Drawing Process and Its Application (다단 습식 신선공정 해석 및 적용)

  • Lee S. K.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.689-695
    • /
    • 2005
  • Multi-pass wet wire drawing process is used to produce fine wire in the industrial field. The production of fine wire through multi-pass wet wire drawing process with appropriate dies pass schedule would be impossible without understanding the relationship among many process parameters such as material properties, dies reduction, friction conditions, drawing speed etc However, in the industrial field, dies pass schedule of multi-pass wet wire drawing process has been executed by trial and error of experts. This study investigated the relationship among many process parameters quantitatively to obtain the important process information fur the appropriate pass schedule of multi-pass wet wire drawing process. Therefore, it is possible to predict the many important process parameters of multi-pass wet wire drawing process such as dies reduction, machine reduction, drawing force, backtension force, slip rate, slip velocity rate, power etc. The validity of the analyzed drawing force was verified by FE simulation and multi-pass wet wire drawing experiment. Also, pass redesign was performed based on the analyzed results, and the wire breakage between the original pass schedule and the redesigned pass schedule was compared through experiment.

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF

미세조류의 Methane 발효특성

  • 강창민;최명락
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

Characteristics of Tantalum Powder Manufactured by the MR and EMR Process (MR 및 EMR제조공정에 따른 탄탈륨분말 특성)

  • Park, Hyeoung-Ho;Yoon, Jae-Sik;Bae, In-Sung;Kim, Yang-Soo;Yoon, Dong-Ju;Won, Dae-Hee;Kim, Byung-Il
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.173-179
    • /
    • 2007
  • In the metallothermic reduction (MR) process used to obtain tantalum powder in one batch, it is difficult to control the morphology and location of the tantalum deposits. On the other hand, an electronically mediated reaction (EMR) process is capable of overcoming this difficulty. The effect of using $K_2TaF_7$ as the raw material and sodium as the reducting agent on the characteristics of tantalum powder are investigated. As the temperature of the reduction varied from 1023K to 1223K, the powder particles obtained with MR were relatively large $({\sim}34{\mu}m)$, while those prepared via EMR were of uniform $(13{\mu}m)$. In the MR process, the Ta powder recovery rate increased from 37% to 83% at 1123K in constrat with EMR process.

Particle Behavior of Silver Nanoparticles Synthesized by Electrical Resistance Analysis (전기저항 분석을 통한 은나노 입자 합성 시의 입자거동 연구)

  • Yoon, Young Woo;Ryu, Si Hong;Yang, Sung Joo;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.531-538
    • /
    • 2015
  • This study examined the size and shape of the nano-silver particle through the analysis of electrical resistance when synthesizing nano-sized silver by using the chemical liquid reduction. Changes in particle behaviors formed according to the changes in electronic characteristics by electric resistance in each time period in the beginning of reduction reaction in a course of synthesizing the nano-silver particle formation were studied. In addition, analysis was conducted on particle behaviors according to the changes in concentration of $AgNO_3$ and in temperature at the time of reduction and nucleation and growth course when synthesizing the particles based on the particle behaviors were also examined. As the concentration of $AgNO_3$ increased, the same amount of resistance of approximately $5{\Omega}$ was increased in terms of initial electronic resistance. Furthermore, according to the result of formation of nuclear growth graph and estimation of slope based on estimated resistance, slops of $6.25{\times}10^{-3}$, $2.89{\times}10^{-3}$, and $1.85{\times}10^{-3}$ were derived from the concentrations of 0.01 M, 0.05 M, and 0.1 M, respectively. As the concentration of $AgNO_3$ increased, the more it was dominantly influenced by the nuclear growth areas in the initial phase of reduction leading to increase the size and cohesion of particles. At the time of reduction of nano-silver particle, the increases of initial resistance were $4{\Omega}$, $4.2{\Omega}$, $5{\Omega}$, and $5.3{\Omega}$, respectively as the temperature increased. As the temperature was increased into $23^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$, and $80^{\circ}C$, slopes were formed as $4.54{\times}10^{-3}$, $4.65{\times}10^{-3}$, $5.13{\times}10^{-3}$, and $5.42{\times}10^{-3}$ respectively. As the temperature increased, the particles became minute due to the increase of nuclear growth area in the particle in initial period of reduction.

Effects of Irrigation/Aspiration Device and Viscoelastic Material on Complication after Extracapsular Lens Extraction in Dogs (개에서 Irrigation/Aspiration장비와 점탄물질이 수정체 낭외적출술후의 합병증에 미치는 효과)

  • 우흥명;권오경;남치주
    • Journal of Veterinary Clinics
    • /
    • v.14 no.1
    • /
    • pp.56-64
    • /
    • 1997
  • These studies were performed to investigate the complications affecting the vision after extracapsular lens extraction(ECE), the effects of an I/A (irrigation & aspiration)device and a viscoelastic material used on the vision, the occurrence of complications and the effective corneal incision method to reduce the corneal opacity in dogs. ECE was performed bilaterally with 3 different methods using clinically normal twele mixed dogs; the method in which I/A device and viscoelastic material were not used, the method in which I/A device was used but viscoelastic material not, and the method in which I/A device and viscoelastic material were used. Postoperative complications were observed as followed; conjunctival injection, uveitis, corneal opacity due to endothelial cell loss, hyphemia, remnants of lens cortex, vitreous loss, synechia and capsular opacity. Preservation rate of vision was lower significantly in the cases showing signs of synechia, capsular opacity, or remnants of lens cortex than the cases not showing the above signs(p<0.01). There were significant reduction of the complications such as corneal opacity, clot in anterior chamber in the group using I/A device compared to the group in which I/A device was not used(p<0.01). Groups using I/A device showed slightly higher vision than the group not using I/A device (75%; 42%). There were no significant differences in the occurrence rate of complications and the preservative rate of vision between the groups with and without viscoelastic material. The present study indicated that the postoperative complications of posterior synechia, capsular opacity, uveitis and vistreous loss were important factors affecting the vision and that I/A device was applicable to extract the lens cortex and effective to elevate the success rate after ECE in dogs.

  • PDF

The Mineral Carbonation Using Steelmaking Reduction Slag (제강 환원슬래그의 광물탄산화)

  • Ryu, Kyoung-Won;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Mineral carbonation for the storage of carbon dioxide is a CCS option that provides an alternative for the more widely advocated method of geological storage in underground formation. Carbonation of magnesium- or calcium-based minerals, especially the carbonation of waste materials and industrial by-products is expanding, even though total amounts of the industrial waste are too small to substantially reduce the $CO_2$ emissions. The mineral carbonation was performed with steelmaking reduction slag as starting material. The steelmaking reduction slag dissolution experiments were conducted in the $H_2SO_4$ and $NH_4NO_3$ solution with concentration range of 0.3 to 1 M at $100^{\circ}C$ and $150^{\circ}C$. The hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at the same leaching temperature. The initial pH of the solution was adjusted to 12 and $CO_2$ partial pressure was 1MPa for the carbonation. The carbonation rate after extracting $Ca^^{2+}$ under $NH_4NO_3$ was higher than that under $H_2SO_4$ and the carbonation rates in 1M $NH_4NO_3$ solution at $150^{\circ}C$ was dramatically enhanced about 93%. In this condition well-faceted rhombohedral calcite, and rod or flower-shaped aragonite were appeared together in products. As the concentration of $H_2SO_4$ increased, the formation of gypsum was predominant and the carbonation rate decreased sharply. Therefore it is considered that the selection of the leaching solution which does not affect the starting material is important in the carbonation reaction.

Forging Effect of Al6061 in Casting/Forging Process (주조/단조 공정에서 Al6061의 단조효과에 관한 연구)

  • Kwon, Oh-Hyuk;Bae, Won-Byong;Cho, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.45-50
    • /
    • 2005
  • In this study, the casting/forging process was applied in manufacturing a low control arm, in order to prove that application of casting/forging process to Al6061 is likely to get the effect of light weight compared with existing steel products and to reduce the cost of materials. Firstly, In order to set up the optimum casting condition of the forging material, Al6061, casting experiments were carried out by controlling pouring temperature of the aluminum for casting, mold temperature, and pouring time. $700^{\circ}C$ pouring temperature, $300^{\circ}C$ mold temperature and 10-second pouring time were taken into account as the optimum casting conditions. With respect to a hot forging test, it is practiced on the basis of a temperature of materials, strain rate, and reduction rate so as to observe each microstructure and examine strain-stress curve simultaneously; examine tensile test and hardness test; eventually set up the optimum hot forging condition. A hot forging test, tensile test, hardness experiment, and microstructure observation were carried out on condition of $70\%$ reduction rate, $500^{\circ}C$ temperature of materials, and 1 strain rate. As a result of those experiments, 330MPa tensile strength, $16.4\%$ elongation, and 122.8Hv hardness were recorded. In oder to get a sound preform which has no unfitting cavity and less flash, two preforms were proposed on the basis of volume rate of the final product; the optimum volume rate of preform for the low control arm was $115\%$. In conclusion, it is confirmed that using the forging material rather than casting materials in casting/forging process is likely to get more superior mechanical properties. Compared with Al6061, performed by means of general forging, moreover, cast/forged Al6061 can not only stimulate productivity by reducing production processes, but cut down the cost of materials by reusing forging scraps.