• Title/Summary/Keyword: Material Property Test

Search Result 776, Processing Time 0.033 seconds

Performance Evaluation of Water Vapour Adsorption/Desorption Property for a Building Material by Mock up Test (실물시험을 통한 흡방습 건축자재의 성능평가)

  • Kim, Hea Jeong;Song, Kyoo Dong;Lee, Yun Gyu
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.53-58
    • /
    • 2009
  • There are increasing developments and uses of functional building materials are recently developed and introduced to the test method for the materials. Especially, moisture problem has a major role are also being established in indoor air quality problems. The purpose of this study is to evaluate the water vapour adsorption/desorption property of a ceiling material. The variation of the temperature and moisture were measured with the application materials by mock up test based on JIS 1470-1. The result shows that water vapour adsorption/desorption property of ceiling material is appeared in changes of moisture adsorption and desorption in comparison with that of a general ceiling material. Therefore, in case of decreasing and increasing in humidity, these materials can be used as an finishing material to sustain comfort condition.

Evaluation of Applicability of Heavy Oil Upgrading By-Product (Pitch) as A Pavement Paving Material (중질유 고도정제 부산물의 도로포장용 역청재료로서의 적용성 평가)

  • Yang, Sung Lin
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.9-18
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the applicability of the pitch, which is produced during SDA petroleum upgrading process, as a pavement paving material. In order for the purpose, the physical and chemical properties of the pitch are analyzed, and then the various plasticizers are applied in the pitch. METHODS : Two types of pitch are selected from oil refinery companies, which are owned the SDA petroleum upgrading process. Also, two types of asphalt binders, PG 64-22 and PG 58-22, are employed to compare with the pitch because these two types of asphalt binders are currently used as paving materials. For the chemical property of the pitch, the composition of SARA (Saturate, Aromatic, Resin, Asphaltene), the elementary composition, and the functional group are analyzed. For the physical property of the pitch, the basic material property tests, such as penetration test, softening point test, flash point test, ductility test, and rotational viscometer test, are performed. Also, the DSR (Dynamic Shear Rheometer) test and the BBR (Bending Beam Rheometer) test are conducted using asphalt binder specimens obtained by both short term aging (Rolling Thin Film Oven, RTFO) and long term aging (Pressure Aging Vessel, PAV) processes. The rheological property of each pitch type is evaluated as a function of temperatures and loading cycles. PG 64-22 asphalt binder is used as a control material. RESULTS AND CONCLUSIONS : The Pitch may not be suitable for the pavement paving material without modifications, but the pitch can be used as alternatives of modified addictive or asphalt. If low molecular component, such as saturate and aromatic components, are added in the pitch based on the development of various plasticizers, it has a strong possibility for the pitch to be used as a alternative. However, in order to verify the performance property of the pitch, further research is needed.

A Study on the Behavior for Automotive Grommet by Using FEA (유한요소해석을 이용한 자동차 그로멧의 거동에 대한 연구)

  • Han, Chang-Yong;Lee, Seong-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.74-79
    • /
    • 2010
  • Automotive industries are interested in material development with low weight and recycling. Grommet is made from EPDM at rubber and used as an automotive component. The nonlinear material properties of rubber are important to predict the behaviors of rubber product. This study concerns material property test to achieve stress-strain curve. Curve fitting is carried out to obtain the nonlinear material constant. The nonlinear material constants of rubber are used for the nonlinear finite element analysis. The results of finite element analysis is executed to predict the behavior property of grommet.

High Temperature Wear Behavior of Inconel 690 Steam Generator tube (인코벨 690 증기발생기 세관의 고온 마모 거동)

  • 홍진기;김인섭;김형남;장기상
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.59-62
    • /
    • 2001
  • Flow induced vibration in steam generators has caused dynamic interactions between tubes and contacting materials resulting in fretting wear . Series of experiments have been performed to examine the wear properties of Inconel 690 steam generator tubes in various environmental conditions. For the present study, the test rig was designed to examine the fretting wear and rolling wear properties in high temperature(room temperature - 290。C) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of the steam generator tube materials. To investigate the wear mechanism of material, the worn was observed using scanning electron microscopy. The weight loss increase at higher test temperature was caused by the decrease of water viscosity and the mechanical property change of tube material. The mechanical property changes of steam generator tube material, such as decrease of hardness or yield stress in the high temperature tests. From the SEM observation of worn surfaces, the severe wear scars were observed in specimens tested at the higher temperature.

  • PDF

The Deformation-Strength Characteristic for Gravel Material(1) - Development for Large Triaxial Test Device - (조립재료의 변형-강도특성에 대하여(I) - 대형삼축시험장치의 개발 -)

  • 신동훈;오병현;박한규;박성진;황성춘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.311-318
    • /
    • 2000
  • In constructions of dams and ports structure, gravels are used as principle structural materials. Gravels have different material property compared with other materials like soil and concretes, etc. For example, material properties of gravels obtained from normal triaxial compression test are usually overestimated due to scale and penetration effects. Also, material properties of gravels under dynamic loads are the main interest when structural behavior of rockfill dam under earthquake loads is analyzed. The development of large triaxial compression apparatus is needed for the better estimation of material property of gravel. This paper reports work in progress to development of large triaxial compression apparatus.

  • PDF

A Study on Squeal Noise Simulation considering the Friction Material Property Changes according to Temperature and Pressure in an Automotive Brake Corner Module (차량용 브레이크 코너 모듈에서 마찰재의 온도와 압력에 따른 물성치 변화를 고려한 스퀼 소음 해석 연구)

  • Cho, Hojoon;Kim, Jeong-Tae;Chae, Ho-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.546-552
    • /
    • 2012
  • This paper is a study on squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material. For this, data of pressure and temperature dependent material properties of lining is achieved by using lining data base and exponential curve fit. Complex eigenvalue analysis is performed for predicting squeal noise frequency and instability and chassis dynamo test is performed for achieving squeal noise frequency, sound pressure level, occurrence temperature & pressure. Initial multi models are composed for considering complex interface conditions such as pad ear-clip, piston-housing and guide pin-torque member. The simulation result of base models is compared with the test result. Squeal noise simulation under the consideration of temperature and pressure dependent material properties of friction material is performed and analyzed using multi models. And additional condition is disc material property variation. Entire simulation conditions are combined and analyzed. Finally, this paper proposes direction of the warm squeal noise model.

  • PDF

An experimental study on the oriented mechanical properties of aluminum micro thin foil material (알루미늄 마이크로 박판소재의 방향성에 관한 실험적 연구)

  • Lee H. J.;Lee N. K.;Choi S.;Lee H. W.;Choi T. H.;Hwang J. H.;Kwag D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • This paper is concerned with the precision material property measurement of a micro metal thin foil that is used in MEMS technology. Since these MEMS components require great precision and accuracy, evaluation of reliability such as the lift cycle endurance test, impact test, and residual stress test is necessary for these components. However, in practice, real reliability tests are not easy to perform due to consideration of various factors. Rather than actual testing, it would be much easier to evaluate the reliability of components by the analytical approach. Although the analytical method is utilized by software tools, it is obviously necessary to acquire fundamental properties of materials through real test methods. In this paper, the oriented mechanical properties of aluminum thin foil are measured by nano scale material property measurement system.

  • PDF

An Experimental Study on the Turning Property of Welded Material (용접부의 선삭특성에 관한 실험적 연구)

  • Jang, Bok-Deuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.13-21
    • /
    • 1986
  • Turning property of metal is affected by the cutting condition, tool geome- try and cutting material. But the turning property of welded material is not welknown. Welded structures usually contain nonhomogeneity, defects and resi- dual stresses due to differential contraction between welded metal and base metal. In this paper, authors conducted the experimental test on the turning property, by changing turning condition and welding electrodes of the welded specimens. The results obtained in these experimental tests are as follows; (1) Within the limit of this experimental test, the cutting force of the weld zone is bigger than that of base metal, and this phenomena is caused by the different mechanical property of the weld zone. The range of the variation of cutting force in the weld zone is caused by the nonhomogeneity of the weld zone, respectively. (2) The surface roughness follows the general characteristic of the effect of cutting condition on the surface roughness and the surface roughness of the weld zone shows coarse surface comparing with that of the base metal. (3) The specimen welded by the electrode E4301, shows worse cutting property than that of E4361 and E4313.

  • PDF

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.