• Title/Summary/Keyword: Master Key

Search Result 221, Processing Time 0.029 seconds

A Master Key for MH Public Key Cryptosystem (MH 공개키 시스템의 Master Key)

  • 고윤석;최병욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.3
    • /
    • pp.34-38
    • /
    • 1984
  • The master key on the multiuser MH public key cryptosystem, can be substituted for multiple private keys, is proposed and derived. Applying it to public key cryptosystem, it can be possible to save memory size by selecting the master key and easy to authenticate the truth of message and the identity of the sender. Vsing this master key, it is proved that the encryption time ratio of MH method is smaller than that of RSA's method.

  • PDF

MKIPS: MKI-based protocol steganography method in SRTP

  • Alishavandi, Amir Mahmoud;Fakhredanesh, Mohammad
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.561-570
    • /
    • 2021
  • This paper presents master key identifier based protocol steganography (MKIPS), a new approach toward creating a covert channel within the Secure Real-time Transfer Protocol, also known as SRTP. This can be achieved using the ability of the sender of Voice-over-Internet Protocol packets to select a master key from a pre-shared list of available cryptographic keys. This list is handed to the SRTP sender and receiver by an external key management protocol during session initiation. In this work, by intelligent utilization of the master key identifier field in the SRTP packet creation process, a covert channel is created. The proposed covert channel can reach a relatively high transfer rate, and its capacity may vary based on the underlying SRTP channel properties. In comparison to existing data embedding methods in SRTP, MKIPS can convey a secret message without adding to the traffic overhead of the channel and packet loss in the destination. Additionally, the proposed covert channel is as robust as its underlying user datagram protocol channel.

Effective Parent-Child Key Establishment Algorithm used ZigBee Sensor Network (ZigBee 센서네트워크에서 효율적인 Parent - Child 키 연결 알고리즘)

  • Seo, Dae-Youl;Kim, Jin-Chul;Kim, Kyoung-Mok;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.35-45
    • /
    • 2006
  • Coordinator is defining so that function as most trust center that is point in security in ZigBee Alliance. Because must do height connection with coordinator in device signing to PAN newly, coordinator has shortcoming that subordinate is revealed to danger directly to Centered and cattish device. When do height connection some device, do not become problem, but if network is huge, coordinator's subordinate shall increase as traffic quantity which happen in coordinator increases. Also, in ZigBee security to link network kina of transmission and mutually certification in ZigBee Alliance standard include, but I do not provide method to deliver master key in each node safely. Because process that transmit master key passes through channel that do not secure, master key has shortcoming that is revealed directly. In this paper, I suggested Parent-Child key establishment algorithm to solve these problem. Proposed algorithm consists of two structures. Master key establishment algorithm and device that sign to PAN newly that can use one-way Hash chain and transmit master key safety are consisted of Parent-Child network key establishment algorithm that do child node and parent node key establishment as can do key establishment efficiently. Method that device proposes in case method that propose in case have master key establishment time was shown better performance $200{\sim}1300ms$ than existing method, and device does not have master key than existing method height connect time about $400{\sim}500ms$ better performance see.

Implementation of Master Changing Algorithm between Nodes in a General Electric Vehicle Network (일반 전동차량 네트워크의 노드간 MASTER 전환 알고리즘 구현)

  • Yeon, Jun Sang;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.65-70
    • /
    • 2017
  • This paper presents the implementation for the master changing algorithm between nodes in a general electric vehicle. The packet processing method based on the unique network method of an electric vehicle is that the method of processing a communication packet has the priority from the node of a vehicle installed at both ends. An important factor in deciding master or slave in a train is that the request data, the status data, and transmits or control codes of sub-devices are controlled from the node which master becomes. If the request data or the status data is transmitted from the non- master side, it is very important that only one of the devices of both stages be master since the data of the request data may collide with each other. This paper proposes an algorithm to select master or slave depending on which vehicle is started first, which node is master or slave, and whether the vehicle key is operation. Finally experimental results show the stable performance and effectiveness of the proposed algorithm.

  • PDF

A Key Management Scheme for Radio Frequency Communication Environment (저속 무전 통신 환경에 적용 가능한 키 관리 방식)

  • Kim, Song-Yi;Lee, Kwang-Woo;Jeong, Han-Jae;Cho, Young-Jun;Cha, Wook-Jae;Kim, Seung-Joo;Won, Dong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.439-448
    • /
    • 2009
  • The development of wireless communications provides mobility and accessibility to the wire communication users. Wireless sensor network is one of the leading wireless communication techniques. The security mechanism for wired network communication cannot be applied to wireless sensor network because of the limited resource and computing capability of nodes. Furthermore, communication errors frequently occur and the speed is low. Thus, efficient key management scheme is required in low-speed environment. In this paper, we proposed an efficient and secured master key-based scheme compared to the existing scheme. The advantage of our scheme is that establishing and renewing the pair-wise key is possible. In addition, it provides functions such as establishing group keys and renewing it. Furthermore, adding nodes is enabled through our scheme. The master key-based scheme can be applied to military operations and to radio communications for confidential communications.

Security Improvement of ID-based Multiple Key Management Scheme for t Scalable Ad Hoc Networks

  • Park, Yo-Han;Park, Young-Ho;Moon, Sang-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.13-18
    • /
    • 2011
  • Security supports are a significant factor in mobile ad hoc networks. Especially in dynamic topologies, considering cluster, key management is essential to provide a secure system. Recently, Li-Liu proposed iD-based multiple key management scheme for cluster-based ad hoc networks. However, we found the security weakness of their scheme. In this paper, we analyze the security of Li-Liu's scheme and show that master secret key and fragment of the master secret key can be revealed to compromised CHs and nodes. Furthermore, we propose a solution to improve the scheme against disclosure of the share key and the master secret key even though system parameters are opened to compromised nodes and modify the Li-Liu's scheme fitted for a scalable networks. The improved IMKM scheme could be usefully applied in dynamic cluster-based MANETs such as the military battlefields, mobile marketplace and VANETs.

The Key Management System using the Secret Sharing Scheme Applicable to Smart Card (스마트 카드에 적용 가능한 비밀분산법을 이용한 키 관리 시스템)

  • Son, Young-Seol;Lee, Dong-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.585-594
    • /
    • 2004
  • When several service providers want to work together with only one master key, they need to properly distribute the key to participants who come in for the co-work business and then securely manage the distributed keys. This paper describes the system that can efficiently and securely manage the master key on the basis of the secret sharing scheme that can reconstruct original secret information as the necessity of reconstructing original secret arises. The proposed system can distribute secret information to several groups and also redistribute the secret to subgroup in proportion to the participant's security level using smart card-based (t, t)-(k, n)-threshold secret scheme for securely keeping secret information and authentication of participant's identification.

8.3 Gbps pipelined LEA Crypto-Processor Supporting ECB/CTR Modes of operation (ECB/CTR 운영모드를 지원하는 8.3 Gbps 파이프라인 LEA 암호/복호 프로세서)

  • Sung, Mi-Ji;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2333-2340
    • /
    • 2016
  • A LEA (Lightweight Encryption Algorithm) crypto-processor was designed, which supports three master key lengths of 128/ 192/256-bit, ECB and CTR modes of operation. To achieve high throughput rate, the round transformation block was designed with 128 bits datapath and a pipelined structure of 16 stages. Encryption/decryption is carried out through 12/14/16 pipelined stages according to the master key length, and each pipelined stage performs round transformation twice. The key scheduler block was optimized to share hardware resources that are required for encryption, decryption, and three master key lengths. The round keys generated by key scheduler are stored in 32 round key registers, and are repeatedly used in round transformation until master key is updated. The pipelined LEA processor was verified by FPGA implementation, and the estimated performance is about 8.3 Gbps at the maximum clock frequency of 130 MHz.

Web Server Cluster's Load Balancing for Security Session

  • Kim Seok-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.2
    • /
    • pp.93-95
    • /
    • 2005
  • In order to create security session, security keys are preconfigured between communication objects. For this purpose, Handshake Protocol exists. The pre-master secret key that is used in this process needs to interpreted by a server to create master secret key, whose process requires a big calculation, resulting in deteriorating system's transmission performance. Therefore, it is helpful in increasing transmission speed to reuse secret keys rather than to create them at every connection.