• Title/Summary/Keyword: Mass uncertainty

Search Result 252, Processing Time 0.028 seconds

Experimental Study of Robust Control considering Structural Uncertainties (구조물의 모델링 불확실성을 고려한 강인제어실험)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.501-508
    • /
    • 2000
  • It is demanded to find the dynamic model of a real structure to design a controller. However, as the structure has inherently infinite number of degree-of-freedom, it is impossible to obtain an exact dynamic model of the structure. Instead a reduction model with finite degree-of-freedom is used for the design of a controller. So there exists uncertainty between a real model and a reduction model which causes poor performance of control. All these uncertainties can degrade the control performance and even cause the control instability. Thus, robust control strategy considering the above uncertainties can be an alternative one to guarantee the performance and stability of the control. This study deals with the experimental verification of robust controller design for the active mass driver. $\mu$-synthesis technique is employed as a robust control strategy. Some weights are chosen based on the difference between the initial plant with which the controller is designed and the perturbed plant to be controlled having the actuator uncertainty. The robustness of $\mu$-synthesis technique is compared with the result of LQG strategy, which does not consider the uncertainty.

  • PDF

Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine

  • Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.379-390
    • /
    • 2018
  • In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed methods has been verified through using experimental modal data of a mass-stiffness system. The obtained damage identification results show the suitable performance of the proposed damage identification method for structures in spite of different uncertainty levels.

Evaluation of Badge-Type Diffusive Sampler Performance for Measuring Indoor Formaldehyde

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Suntae
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The purposes of this study were to determine the efficiency of using a badge-type diffusive sampler to measure formaldehyde concentrations indoors, and to evaluate the uncertainty associated with the use of data from a diffusive sampler. A diffusive sampler using 2,4-dinitrophenylhydrazine (DNPH) reagent was found to be a suitable tool for measuring the formaldehyde concentration in an indoor environment. The agreement between results of the diffusive sampler and DNPH cartridge were good, showing a correlation coefficient of 0.996. The sampling rate for the diffusive sampler was calculated to be 1.428 L $hr^{-1}$, with a standard deviation of 0.084 L $hr^{-1}$. It was found through analysis that the uncertainty associated with the sampling rate and the mass of the formaldehyde transported into the diffusive sampler by diffusion was the dominant contributor to the total.

Robust Pole Assignment Control for Linear Systems with Structured Uncertainty (구조적 불확실성을 갖는 선형계의 강인한 극배치 제어)

  • Kim, Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 1992
  • This paper deals with the problem of robust pole-assignment control for linear systems with structured uncertainty. It considers two cases whose colsed-loop characteristic equations are presented as a family of interval polynomial and polytopic polynomial family respectively. We propose a method of finding the pole-placement region in which the fixed gain controller guarantees the required damping ratio and stability margin despite parameter perturbation. Some results of Kharitonov like stability and two kinds of transformations are included. As an illustrative example, we show that the proposed method can apply effectivly to the single magnet levitation system including some uncertainties (mass, inductance etc.).

  • PDF

Uncertainties impact on the major FOMs for severe accidents in CANDU 6 nuclear power plant

  • R.M. Nistor-Vlad;D. Dupleac;G.L. Pavel
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2670-2677
    • /
    • 2023
  • In the nuclear safety studies, a new trend refers to the evaluation of uncertainties as a mandatory component of best-estimate safety analysis which is a modern and technically consistent approach being known as BEPU (Best Estimate Plus Uncertainty). The major objectives of this study consist in performing a study of uncertainties/sensitivities of the major analysis results for a generic CANDU 6 Nuclear Power Plant during Station Blackout (SBO) progression to understand and characterize the sources of uncertainties and their effects on the key figure-of-merits (FOMs) predictions in severe accidents (SA). The FOMs of interest are hydrogen mass generation and event timings such as the first fuel channel failure time, beginning of the core disassembly time, core collapse time and calandria vessel failure time. The outcomes of the study, will allow an improvement of capabilities and expertise to perform uncertainty and sensitivity analysis with severe accident codes for CANDU 6 Nuclear Power Plant.

Decision Criteria and Affecting Factors in Information Technology Adoption - Innovation Characteristics and Critical Mass Perspective - (정보기술 도입 결정기준 및 영향 요인 - 혁신특성과 핵심집단 관점 -)

  • Park, J.-Hun
    • Asia pacific journal of information systems
    • /
    • v.9 no.4
    • /
    • pp.125-142
    • /
    • 1999
  • The increased investment in technological innovations makes the investigation of factors affecting technology adoption more interesting. Several perspectives have been proposed to explain the determinants of information technology adoption. While the traditional innovation diffusion research streams try to explain and predict adoption behavior with the adopter's perceptions about the characteristics of the innovation itself, critical mass theorists argue that adoption behavior as a collective action is based on what their business partners are doing and whether there exists enough critical mass to justify the investment. Drawing on theses two perspectives, this study investigates the decision criteria in the adoption of information technology as innovation and factors affecting the decision criteria. The survey results reveal that the adoption behavior is affected both by innovation characteristics and by critical mass's activity. Correlation analysis, t-test, and stepwise regression models also show that as the environmental uncertainty is getting higher, adoption decision is affected more by what others are doing, and that highly competitive organizations seem to play the role of critical mass.

  • PDF

The design of a robust controller for the speed control of a two-mass system (2관성 시스템의 속도 제어를 위한 강건 제어기의 설계)

  • 이상효;이상철;황영민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.767-770
    • /
    • 1996
  • A H$\_$.inf./ contro theory was applied to motor speed control of two-mass system to get controller which acts effectively with control object including uncertainties. The H$\_$.inf./ control problem was composed and solved. After that, numerical simulation were executed to confirm ability of the controller which compared with PI controller.

  • PDF

The Influencing Factors on Quality of Life among Breast Cancer Survivors (유방암 생존자의 삶의 질 영향요인)

  • Kim, Yoon-Sun;Tae, Young-Sook
    • Asian Oncology Nursing
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • Purpose: This study was aimed to identify the influencing factors on the quality of life among breast cancer survivors. Methods: The subjects were 159 female patients who visited out-patient department (OPD) after the mass removal surgery for breast cancer and had completed adjuvant treatments such as chemotherapy, radiation therapy at a university hospital and a general hospital. Data collection was conducted using the Ferrell QOL scale, the Mishel uncertainty scale, the Fitts & Osgoods body image scale revised by Jeon & Kim. the Rosenberg self-esteem scale, and the Kang family support scale. Results: The level of QOL in the participants was in the middle. There were a significant correlation between QOL, uncertainty, self-esteem, and family support. There were significant differences in QOL with the perceived health condition and the best support person. In a regression analysis, the most powerful predictor of QOL was body image (21.7%). Altogether uncertainty and perceived health condition explained 28.6% of the variance of QOL of the participants. Conclusion: Body image, uncertainty, and perceived health condition were important predictors of QOL. These results demonstrated the need for developing interventions to improve QOL of breast cancer survivors.

Application of Uncertainty Method fer Analyzing Flood Inundation in a River (하천 홍수범람모의를 위한 불확실도 해석기법의 적용)

  • Kim, Jong-Hae;Han, Kun-Yeun;Seo, Kyu-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.661-671
    • /
    • 2003
  • The reliability model is developed for analyzing parameter uncertainty and estimating of flood inundation characteristics in a protected lowland. The approach is based on the concept of levee safety factor and the statistical analysis of model parameters affecting the variability of flood levels. Monte Carlo simulation is incorporated into the varied flow and unsteady flow analysis to quantify the impact of parameter uncertainty on the variability of flood levels. The model is applied to a main stem of the Nakdong River from Hyunpoong to Juckpogyo station. Simulation results show that the characteristics of channel overflow and return now are well simulated and the mass conservation was satisfied. The inundation depth and area are estimated by taking into consideration of the uncertainty of width and duration time of levee failure.