• 제목/요약/키워드: Mass Transfer Reactor

검색결과 150건 처리시간 0.03초

독성가스 제거용 기포탑 반응기의 설계기법 (Design Parameters Estimations for Bubble Column Reactors to Remove Toxic Gases)

  • 오정환;홍민선
    • 한국위험물학회지
    • /
    • 제6권2호
    • /
    • pp.95-104
    • /
    • 2018
  • Gas-liquid bubble column reactors are extensively used in industrial processes. A detailed knowledge of bubble size distribution is needed for determining the mass transfer in gas-liquid film. Experimental data on bubble size distribution and liquid-side mass transfer coefficient($k_L$) were used to calculate the estimated time to saturation in bubble column reactor. Also, the gas flux was evaluated to the liquid-side mass transfer coefficient($k_L$) and solubility data for hydrogen sulfide($H_2S$) and chlorine($Cl_2$) absorption into water. Simulation results show that $H_2S$ absorption time to 50 % of saturation concentrations are 611 sec and 1,329 sec when bubble diameters are 0.5 mm and 4.5 mm, while absorbing 1 % $H_2S$ gas. In case of $Cl_2$, absorption time range 657 to 1,400 sec when bubble size range 0.5 mm to 4.5 mm, while absorbing 1 % $Cl_2$ gas. Calculated simulation results can be used in the design of emergency relief bubble reactors.

코발트 금속 폼 촉매와 열교환형 반응기를 이용한 Fischer-Tropsch 합성 반응 (Fischer-Tropsch synthesis in the novel system: cobalt metallic foam catalyst and heat-exchanger typed reactor)

  • 양정일;양정훈;고창현;김학주;천동현;이호태;정헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.133.2-133.2
    • /
    • 2010
  • Fischer-Tropsch synthesis (FTS) was carried out in heat-exchanger typed reactor with cobalt metallic foam catalyst. Considering the heat and mass transfer limitations in the cobalt catalyst, a Co-foam catalyst with an inner metallic foam frame and an outer cobalt catalyst was developed. The Co-foam catalyst was highly selective toward liquid hydrocarbon production and the liquid hydrocarbon productivity at $203^{\circ}C$ reached to $52.5ml/(kg_{cat}{\cdot}h)$, which was higher than that obtained by the Co-pellet. Furthermore, the heat-exchanger typed reactor was developed to efficiently control the highly exothermic reaction heat. The reaction heat generated in the FTS reaction on the cobalt active site was easily transferred to reactor wall by the metallic foam in the catalyst and the transferred reaction heat was directly removed by the hot oil which circulated the wall side of the heat-exchanger typed reactor.

  • PDF

고효율 오존장치를 이용한 NOM 제거 및 Bromate 생성 특성 (Investigation on Bromate Formation and Removal of NOM during Ozonation in Super Ozone Mass Transfer Reactor)

  • 송기주;최일환;백경희;이상태
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1137-1143
    • /
    • 2006
  • In this study we investigated the removal characteristics of NOM and bromate formation characteristics in SOMT reactor. The system was recently developed as a novel ozone reactor and installed in SJ pilot plant. DOC values were decreased within 3% after treatment of 0.5~2.0 mg/L ozone dosage in SOMT reactor while the $UV_{254}$ value was 69% decreased at 2.0 mg/L ozone dosage. The composition of NOM was analysed by LC-OCD (Organic Cabon Detector) after ozone treatment in SOMT reactor to elucidate the variation of NOM character. Polysaccharide (more than 20,000 g/mol) fraction of NOM was decomposed while building blocks (350~500 g/mol) and neutral (less than 350 g/mol) fraction increased. Spiked bromide reacted with 0.5~2.0 mg/L ozone dosage in the SOMT reactor. The bromate formation was proportional to the ozone dosage ($R^2=0.978$) but not proportional to reaction time. The maximum concentration of formated bromate was not exceeded to 10% of spiked bromide concentration.

이액상계를 이용한 토양슬러리 반응기에서의 PAH 거동 특성

  • 이재영;백기태;조현정;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.144-147
    • /
    • 2003
  • In this study, the mass transfer behaviors of phenanthrene, anthracene, and pyrene in soil slurry reactor (SSR) using two-liquid phase (TLP) system were investigated. The mass transfer ratio and rate of PAH in the TLP system using light paraffine oil, which has the highest solubility of PAH, were influenced by the amount of light paraffine oil and mixing speed. When the amount of light paraffine oil decreased from 15 % to 2.5 % (v/v), the mass transfer ratio of anthracene decreased significantly compared with that of phenanthrene and pyrene. As mixing speed increased, the initial mass transfer rate of PAH within 1 day was enhanced. However, each final mass transfer ratio of three PAHs after 5 day was similar irrespective of mixing speed.

  • PDF

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발 (Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube)

  • 강덕지;김환열;배윤영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF

색도물질과 옥살산의 오존분해를 위한 고효율 Jet Loop 반응기의 적용 (Application of High-performance Jet Loop Reactor for the Decolorization of Reactive black 5 and Mineralization of Oxalic Acid by Ozone)

  • 변석종;;;조순행;윤제용;김수명
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.78-85
    • /
    • 2004
  • As an ozone contactor, we newly adopted HJLR (High-performance Jet Loop Reactor) for the decolorization of Reactive black 5 and the mineralization of oxalic acid, which has been applied exclusively in biological wastewater treatments and well-known for high oxygen transfer characteristics. The ozonation efficiency for organic removals and ozone utilization depending on the mass transfer rate were compared to those of Stirred bubble column reactor, which was controlled by varing energy input in the HJLR and Stirred bubble column reactor. The results were as follows; first, the decolorization rate of Reactive black 5 in the HJLR reactor was nearly proportional to the increasing $k_La$. When the $k_La$ was increased by 25 % from $13.0hr^{-1}$ to $16.4hr^{-1}$, 30 % of the k' (apparent reaction rate constant) was increased from 0.1966 to $0.2665min^{-1}$ (Stirred bubble column; from 0.1790 to $0.2564min^{-1}$). Ozone transfer was found to be a rate-determining step in decolorizing Reactive black 5, which was supported by that no residual ozone was detected in all of the experiments. Second, the mineralization of oxalic acid was not always proportional to the increasing $k_La$ in the RJLR reactor. The rate-determining step for this reaction was OH(OH radical) production with ozone transfer, because residual ozone was always detected during the ozonation of oxalic acid in contrast with Reactive black 5. This result indicates that the increase of $k_La$ in the HJLR reactor is beneficial only when there are in ozone transfer limited regions. In addition, regardless of $k_La$, the mineralization of oxalic acid was nearly accomplished within 60 minutes. It was interpreted as that the longer staying of residual ozone by whirling liquid in the HJLR reactor contributed to an high ozone utilization(83-94%), producing more OR radicals.

Influence of an in-vessel debris bed on the heat load to a reactor vessel under an IVR condition

  • Joon-Soo Park;Hae-Kyun Park;Bum-Jin Chung
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.180-189
    • /
    • 2023
  • We measured the heat load to a reactor vessel with and without the in-vessel debris bed under an IVR-ERVC condition. Mass transfer methodology was adopted based on heat and mass transfer analogy to achieve high Ra'H of order ~1015 with compact test rigs. We postulated the in-vessel debris bed has a flat top and particulate debris was simulated as an identical diameter spheres. We conducted experiments varying the height of the debris bed and the results showed that Nusselt numbers decreased in both uppermost and curved surfaces with the increasing bed height. Once the debris bed is formed, it acts as an obstacle to the natural convective flow, which reduces the buoyancy. The reduction of driving force results in the impaired heat transfer in both upward and downward heat transfers.

대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구 (Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control)

  • 원양수;조완근
    • Korean Chemical Engineering Research
    • /
    • 제53권4호
    • /
    • pp.489-495
    • /
    • 2015
  • 대기오염물질처리를 위한 생물살수여과법에서 물질전달현상을 이해하기 위한 선행 실험결과를 기초로 각각의 운전조건에서 기체/액체(살수액), 기체/고체(미생물)와 액체/고체에서의 model을 이용하여 물질전달계수를 평가하였다. 생물살수여과법에서 기/액에서는 정상상태물질수지, 그리고 액/고와 기/고에서는 동적물질수지를 이용하여 물질전달 model을 확립하고 그 결과를 고찰하였다. 물질전달 model은 여과탑을 일정크기 구획하여, 각 구획에서 동적 물질수지식을 수치해석 전산코드를 이용해 계산하였다. 동적물질수지식을 이용하여 계산된 결과는 실험결과와 비교하여 생물살수여과법에서 기/액, 기/고, 액/고 각상간의 물질전달계수($K_La$)를 산정하였다. 본 연구에서는 대기오염제어를 위한 생물살수여과법에서 물질전달계수를 결정하기 위한 실험방법개발과 model을 이용하여 물질전달현상을 고찰하였다.

IMPROVEMENT OF CUPID CODE FOR SIMULATING FILMWISE STEAM CONDENSATION IN THE PRESENCE OF NONCONDENSABLE GASES

  • LEE, JEHEE;PARK, GOON-CHERL;CHO, HYOUNG KYU
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.567-578
    • /
    • 2015
  • In a nuclear reactor containment, wall condensation forms with noncondensable gases and their accumulation near the condensate film leads to a significant reduction in heat transfer. In the framework of nuclear reactor safety, the film condensation in the presence of noncondensable gases is of high relevance with regards to safety concerns as it is closely associated with peak pressure predictions for containment integrity and the performance of components installed for containment cooling in accident conditions. In the present study, CUPID code, which has been developed by KAERI for the analysis of transient two-phase flows in nuclear reactor components, is improved for simulating film condensation in the presence of noncondensable gases. In order to evaluate the condensate heat transfer accurately in a large system using the two-fluid model, a mass diffusion model, a liquid film model, and a wall film condensation model were implemented into CUPID. For the condensation simulation, a wall function approach with a heat/mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model, and then introduces the simulation result using the improved CUPID for a conceptual condensation problem in a large system.