DOI QR코드

DOI QR Code

Influence of an in-vessel debris bed on the heat load to a reactor vessel under an IVR condition

  • Joon-Soo Park (Department of Nuclear Engineering, Kyung Hee University) ;
  • Hae-Kyun Park (Department of Nuclear Engineering, Kyung Hee University) ;
  • Bum-Jin Chung (Department of Nuclear Engineering, Kyung Hee University)
  • Received : 2022.02.26
  • Accepted : 2022.09.21
  • Published : 2023.01.25

Abstract

We measured the heat load to a reactor vessel with and without the in-vessel debris bed under an IVR-ERVC condition. Mass transfer methodology was adopted based on heat and mass transfer analogy to achieve high Ra'H of order ~1015 with compact test rigs. We postulated the in-vessel debris bed has a flat top and particulate debris was simulated as an identical diameter spheres. We conducted experiments varying the height of the debris bed and the results showed that Nusselt numbers decreased in both uppermost and curved surfaces with the increasing bed height. Once the debris bed is formed, it acts as an obstacle to the natural convective flow, which reduces the buoyancy. The reduction of driving force results in the impaired heat transfer in both upward and downward heat transfers.

Keywords

Acknowledgement

This study was sponsored by the Ministry of Science and ICT (MSIT) and was supported by nuclear Research & Development program grant funded by the National Research Foundation (NRF) (Grant codes 2020M2D2A1A02065563). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000070).

References

  1. H.K. Park, B.J. Chung, Mass transfer experiments for the heat load during in-vessel retention of core melt, Nucl. Eng. Technol. 48 (2016) 906-914. https://doi.org/10.1016/j.net.2016.02.015
  2. S.H. Kim, B.J. Chung, Heat load imposed on reactor vessels during in-vessel retention of core melts, Nucl. Eng. Des. 308 (2016) 1-8. https://doi.org/10.1016/j.nucengdes.2016.08.010
  3. H.K. Park, S.H. Kim, B.J. Chung, Variation in the angular heat flux of the oxide pool with Rayleigh number, Ann. Nucl. Energy 170 (2017) 128-135. https://doi.org/10.1016/j.anucene.2017.04.027
  4. H.K. Park, S.H. Kim, B.J. Chung, Natural convection of melted core at the bottom of nuclear reactor vessel in a severe accident, Int. J. Energy Res. 42 (2018) 303-313. https://doi.org/10.1002/er.3893
  5. J.S. Park, H.K. Park, B.J. Chung, Influence of crust formation on the heat load to a reactor vessel under an in-vessel retention condition, Ann. Nucl. Energy 166 (2022), 108813.
  6. J.L. Rempe, K.Y. Suh, F.B. Cheung, In-vessel retention of molten corium: lessons learned and outstanding issues, Nucl. Technol. 161 (3) (2008) 210-267. https://doi.org/10.13182/NT08-A3924
  7. J.H. Jung, S.M. An, K.S. Ha, H.Y. Kim, Evaluation of heat-flux distribution at the inner and outer reactor vessel walls under the in-vessel retention through external reactor vessel cooling condition, Nucl. Eng. Technol. 47 (2015) 66-73. https://doi.org/10.1016/j.net.2014.11.005
  8. O. Kymӓlӓinen, H. Tuomisto, O. Hongisto, T.G. Theofanous, Heat flux distribution from a volumetrically heated pool with high Rayleigh number, Nucl. Eng. Des. 149 (1994) 401-408. https://doi.org/10.1016/0029-5493(94)90305-0
  9. T.G. Theofanous, M. Maguire, S. Angelini, T. Salmassi, The first results from the ACOPO experiment, Nucl. Eng. Des. 169 (1997) 49-57. https://doi.org/10.1016/S0029-5493(97)00023-X
  10. B.R. Sehgal, A. Stepanyan, A.K. Nayak, U. Chikkanagoudar, Natural convection heat transfer in a stratified melt pool with volumetric heat generation, in: 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety, Nara, Japan, October 4-8, 2004.
  11. Y.P. Zhang, L.T. Zhang, Y.K. Zhou, W.X. Tian, S.Z. Qiu, G.H. Su, B. Zhao, Y.D. Yuan, R.B. Ma, Natural convection heat transfer test for in-vessel retention at prototypic Rayleigh numbers e results of COPRA experiments, Prog. Nucl. Energy 86 (2016) 80-86. https://doi.org/10.1016/j.pnucene.2015.10.014
  12. X. Gaus-Liu, A. Miassoedov, S. Gabriel, in: Charlotte ICONE24 (Ed.), Review of Experimental Studies on the Heat Transfer Behavior of Volumetrically Heated Pool with Different Boundary Conditions and the Influence of Crust Formation, June 26-30, 2016. NC, USA.
  13. D.H. Nguyen, F. Fichot, V. Topin, Investigation of the structure of debris beds formed fuel rods fragmentation, Nucl. Eng. Des. 313 (2017) 96-107. https://doi.org/10.1016/j.nucengdes.2016.11.019
  14. F. Fichot, F. Duval, N. Tregoures, C. Bechaud, M. Quintard, The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability, Nucl. Eng. Des. 236 (2006) 2144-2163. https://doi.org/10.1016/j.nucengdes.2006.03.059
  15. W. Ma, Y. Yuan, B.R. Sehgal, In-vessel melt retention of pressurized water reactors: historical review and future research needs, Engineering 2 (2016) 103-111. https://doi.org/10.1016/J.ENG.2016.01.019
  16. K.H. Lim, Y.J. Cho, S.W. Whang, H.S. Park, Evaluation of an IVR-ERVC strategy for a high power reactor using MELCOR 2.1, Ann. Nucl. Energy 109 (2017) 337-349. https://doi.org/10.1016/j.anucene.2017.05.045
  17. F. Xiaoliang, Y. Yanhua, Study on core melt process for a 1000MW reactor by external reactor vessel cooling, in: 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Shanghai, China, October 10-14, 2010.
  18. R.J. Park, S.W. Hong, Effect of SAMG entry condition on operator action time for severe accident mitigation, Nucl. Eng. Des. 241 (2011) 1807-1812. https://doi.org/10.1016/j.nucengdes.2011.01.047
  19. R.J. Park, K.S. Ha, H.Y. Kim, Detailed evaluation of natural circulation mass flow rate in the annular gap between the outer reactor vessel wall and insulation under IVR-ERVC, Ann. Nucl. Energy 89 (2016) 50-55. https://doi.org/10.1016/j.anucene.2015.11.022
  20. S.H. Kim, H.K. Park, B.J. Chung, Natural convection of the oxide pool in a three-layer configuration of core melts, Nucl. Eng. Des. 317 (2017a) 100-109. https://doi.org/10.1016/j.nucengdes.2017.03.036
  21. S.H. Kim, H.K. Park, B.J. Chung, Two- and three-dimensional experiments for oxide pool in in-vessel retention of core melts, Nucl. Eng. Technol. 49 (2017b) 1405-1413. https://doi.org/10.1016/j.net.2017.05.008
  22. S.H. Kim, B.J. Chung, Mass transfer experiments on the natural convection heat transfer of the oxide pool in a three-layer configuration, Prog. Nucl. Energy 106 (2018) 11-19. https://doi.org/10.1016/j.pnucene.2018.02.022
  23. J.W. Bae, B.J. Chung, Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating, Nucl. Eng. Technol. 51 (2019) 996-1007. https://doi.org/10.1016/j.net.2019.02.004
  24. J.W. Bae, B.J. Chung, Comparison of 2-D and 3-D IVR experiments for oxide layer in the three-layer configuration, Nucl. Eng. Technol. 52 (2020) 2499-2510. https://doi.org/10.1016/j.net.2020.04.016
  25. Y. Jin, W. Xu, X. Liu, X. Cheng, In- and ex-vessel coupled analysis of IVR-ERVC phenomenon for large scale PWR, Ann. Nucl. Energy 80 (2015) 322-337. https://doi.org/10.1016/j.anucene.2015.01.041
  26. A. Bejan, Convection Heat Transfer, fourth ed., Wiley, New York, 2003, pp. 537-595.
  27. E.J. Fenech, C.W. Tobias, Mass transfer by free convection at horizontal electrodes, Electrochim. Acta 2 (1960) 311-325. https://doi.org/10.1016/0013-4686(60)80027-8
  28. V.G. Levich, Physicochemical Hydrodynamics, second ed., Prentice-Hall, New Jersey, 1962.
  29. M.S. Chae, B.J. Chung, Natural convection heat transfer in a uniformly heated horizontal pipe, Heat Mass Tran. 50 (2014) 115-123. https://doi.org/10.1007/s00231-013-1234-8
  30. H.H. Ahn, J.Y. Moon, B.J. Chung, Anode influence on the electrochemical realization of packed bed heat transfer, Heat Mass Tran. 57 (2021) 1685-1695. https://doi.org/10.1007/s00231-021-03063-4
  31. H.H. Ahn, J.Y. Moon, B.J. Chung, Influences of sphere diameter and bed height on the natural convection heat transfer of packed beds, Int. J. Heat Mass Tran. 194 (2022), 123032.
  32. J. Krysa, A.A. Wragg, D.M. Thomas, M.A. Patrick, Free convection mass transfer in open upward-facing cylindrical cavities, Chem. Eng. J. 79 (2000) 179-186. https://doi.org/10.1016/S1385-8947(99)00105-9
  33. J. Krysa, D. Houf, C.F. Oduoza, A.A. Wragg, Free convective mass transfer at up-pointing truncated cones, Chem. Eng. J. 85 (2002) 147-151. https://doi.org/10.1016/S1385-8947(01)00219-4
  34. S.H. Ko, D.W. Moon, B.J. Chung, Applications of electroplating method for heat transfer studies using analogy concept, Nucl. Eng. Technol. 38 (2006) 251-258.
  35. J.K. Lee, K.Y. Suh, K.J. Lee, J.I. Yun, Experimental study of natural convection heat transfer in a volumetrically heated semicircular pool, Ann. Nucl. Energy 73 (2014) 432-440. https://doi.org/10.1016/j.anucene.2014.07.019
  36. L. Barleon, K. Thomauske, H. Werle, Cooling of debris beds, Nucl. Technol. 65 (1984) 67-86. https://doi.org/10.13182/NT84-A33374
  37. T.N. Dinh, R.R. Nourgaliev, B.R. Sehgal, On heat transfer characteristics of real and simulant melt pool experiments, Nucl. Eng. Des. 169 (1997) 151-164. https://doi.org/10.1016/S0029-5493(96)01283-6
  38. W.G. Steele, H.W. Coleman, Experimental and Uncertainty Analysis for Engineers, second ed., John Wiley & Son, Canada, 1999.
  39. J.M. Bonnet, J.M. Seiler, Thermal hydraulic phenomena in corium pools: the BALI experiment, in: 7th International Conference on Nuclear Engineering, Tokyo, Japan, April 19-23, 1999.