• 제목/요약/키워드: Mass Spring Model

검색결과 322건 처리시간 0.023초

인간 모델과 1차 샘플-홀드 방식이 가상 스프링 모델 시스템의 안정성에 미치는 영향 분석 (Effects of a Human Impedance and a First-Order-Hold Method on Stability of a Haptic System with a Virtual Spring Model)

  • 이경노
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.23-29
    • /
    • 2013
  • When a human operator interacts with a virtual wall that is modeled as a virtual spring model, the lager the stiffness of the virtual spring is, the more realistic the operator feels that the virtual wall is. In the previous studies, it is shown that the maximum available stiffness of a virtual spring to guarantee the stability can be increased when the first-order-hold method is applied, however the effects of a human impedance on the stability are not considered. This paper presents the effects of a human impedance on stability of haptic system with a virtual spring and a first-order-hold (FOH) method. The human impedance model is modeled as a linear second-order system model. The relations between the maximum available stiffness of a virtual spring and the human impedance such as a mass, a damping and a stiffness are analyzed through the MATLAB simulation. It is shown that the maximum available stiffness is proportional to the square root of the human mass or damping respectively.

  • PDF

지진하중을 받는 말뚝 시스템의 고유 진동수 예측 (Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake)

  • 양의규;권선용;최정인;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

퍼지추론을 적용한 직물 애니메이션 (Real Time Textile Animation Using Fuzzy Inference)

  • 황선민;송복희;윤한경
    • 한국콘텐츠학회논문지
    • /
    • 제11권9호
    • /
    • pp.1-8
    • /
    • 2011
  • 본 연구는 질량-스프링 모델 기반의 직물 모델에서 질점의 움직임을 분석하여 실시간 직물 애니메이션이 가능한 퍼지 추론 기법을 제안한다. 지금까지 직물과 같은 탄성체를 표현하기 위한 많은 기법들은 질량-스프링 모델을 사용하였다. 직물은 다수의 질량과 스프링의 조합으로 구성되어 변형 가능한 면을 이루게되고, 면의 움직임은 운동법칙을 기반으로 수치적분을 통해 계산될 수 있다. 제안된 방법과 동일한 직물구조에서 Explicit 오일러 방법은 ${\Delta}t$ > 0.01 일 경우 불안정성 문제가 나타났으며, Implicit 오일러 방법은 ${\Delta}t$ = 0.03 에서도 애니메이션이 생성되지만 많은 양의 선형 시스템을 계산해야 하는 단점을 가지고 있어서 실시간 처리에 부적합하다. 본 연구는 질량-스프링 모델에서 질점의 움직임을 계산하기 위하여 ${\Delta}t$ = 0.03을 가지면서도 실시간 처리가 가능한 방법을 제안한다.

An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume Conservation

  • Zhang, Xiaorui;Wu, Hailun;Sun, Wei;Yuan, Chengsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1738-1756
    • /
    • 2020
  • To improve the accuracy and realism of the virtual surgical simulation system, this paper proposes an optimized mass-spring model with shape restoration ability based on volume conservation to simulate soft tissue deformation. The proposed method constructs a soft tissue surface model that adopts a new flexion spring for resisting bending and incorporates it into the mass-spring model (MSM) to restore the original shape. Then, we employ the particle swarm optimization algorithm to achieve the optimal solution of the model parameters. Besides, the volume conservation constraint is applied to the position-based dynamics (PBD) approach to maintain the volume of the deformable object for constructing the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system on the PHANTOM OMNI force tactile interaction device to realize the deformation simulation of the virtual liver. Experimental results show that the proposed model has a good shape restoration ability and incompressibility, which can enhance the deformation accuracy and interactive realism.

Numerical Evaluation of Phase Velocity and Attenuation of Ultrasonic Waves in Fiber-Reinforced Composites Using the Mass-Spring-Dashpot Lattice Model

  • Baek, Eun-Sol;Yim, Hyun-June
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.483-495
    • /
    • 2008
  • The paper presents a numerical study to evaluate the phase velocities and attenuations of the average longitudinal and shear ultrasonic waves resulting from multiple scattering in fiber-reinforced composites. A computational procedure developed in this work is first used to produce a random, yet largely even distribution of fibers. Both the viscoelastic epoxy matrix and lossless randomly distributed graphite fibers are modeled using the mass-spring-dashpot lattice model, with no damping for the latter. By numerically simulating ultrasonic through-transmission tests using this direct model of composites, phase velocities and attenuations of the longitudinal and shear waves through the composite are found as functions of frequency or fiber concentration. The numerical results are observed to generally agree with the corresponding results in the literature. Discrepancies found in some detail aspects, particularly in the attenuation results, are also addressed.

스프링-매스-빔 모델을 이용한 유연매체의 정.동적 거동해석 (Static and Dynamic Analysis of Flexible Media Using Spring-Mass-Beam Model)

  • 지중근;정진우;홍성권;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.906-911
    • /
    • 2004
  • In the development of sheet-handling machinery, it is important to be able to predict the italic and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. In this paper, a spring-mass-beam model is introduced. This model consists of rotational springs, shear springs and masses. The formulations for static and dynamic behavior of sheets are introduced. And some simulations are presented for static and dynamic cases.

  • PDF

A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure

  • Rong, Kunjie;Lu, Zheng
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.31-43
    • /
    • 2022
  • A nonlinear gas-spring tuned mass damper is proposed to mitigate the seismic responses of the multi-degree-of-freedom (MDOF) structure, in which the nine-story benchmark model is selected as the controlled object. The nonlinear mechanical properties of the gas-spring are investigated through theoretical analysis and experiments, and the damper's control parameters are designed. The control performance and damping mechanism of the proposed damper attached to the MDOF structure are systematically studied, and its reliability is also explored by parameter sensitivity analysis. The results illustrate that the nonlinear gas-spring TMD can transfer the primary structure's vibration energy from the lower to the higher modes, and consume energy through its own relative movement. The proposed damper has excellent "Reconciling Control Performance", which not only has a comparable control effect as the linear TMD, but also has certain advantages in working stroke. Furthermore, the control parameters of the gas-spring TMD can be determined according to the external excitation amplitude and the gas-spring's initial volume.

스프링조작기 개발을 위한 코일 스프링 설계 프로그램 개발 (Development of the Coil Spring Design Program for Spring Operating Mechanism)

  • 김민수;전철웅;손정현
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.281-285
    • /
    • 2017
  • Since the performance of the spring operating mechanism for a circuit breaker mainly depends on the dynamic behavior and mass of the coil spring, its dynamic analysis is required to evaluate the performance of the spring operating mechanism. In this study, a coil spring design program is developed for the spring operating mechanism. An experimental approach is used to find the variables satisfying the design constraints' requirements. The coil spring is formed by using a lumped mass spring model. This program offers reference data for the design of coil springs and for the spring operating mechanism.

열차의 1차원 연결 해석 모델링 기법 연구 (A study on 1D modeling techniques for collision analysis of train coupling)

  • 김형준;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1203-1209
    • /
    • 2006
  • One dimensional collision analysis is often used to simulate a train-to-train coupling or collision accident. But there are various numerical modeling techniques utilized for dynamic models of rolling stocks such as a lumped-spring-mass model or a bar-mass model. In rolling stock industries, a lumped-spring-mass model is mainly applied without consideration of bogie attachments separately. In this case, a dynamic stiffness coefficient is introduced to compensate the overestimated car mass effects due to the linkage stiffness of bogies and seats. In this paper, the effects of dynamic stiffness coefficients and wheel-rail friction coefficients were studied by simulating a bar-mass model with bogie attachments separately.

  • PDF

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.