DOI QR코드

DOI QR Code

Real Time Textile Animation Using Fuzzy Inference

퍼지추론을 적용한 직물 애니메이션

  • Received : 2011.04.20
  • Accepted : 2011.07.19
  • Published : 2011.09.28

Abstract

A fuzzy inference technique for real-time textile animation without integration at textile model based Mass-Spring model is introduced. Until now many techniques have used the Mass-Spring model to describe elastically deformable objects like textile. A textile object is able to represent as a deformable surface composed of spring and masses, the movement of textile surface which is analysed through the numerical integration by the fundamental law of dynamics such as Hooke's law. However, the integration methods have 'instability problems' if the explicit Euler's method is applied or 'large amounts of calculation' if the implicit Euler's method is applied. A simple and fast animation technique for Mass-Spring model of a textile with fuzzy inference is proposed. The stabilized simulation result is obtained the state of each mass-point in real-time for the n of mass-points by a relatively simple calculation.

본 연구는 질량-스프링 모델 기반의 직물 모델에서 질점의 움직임을 분석하여 실시간 직물 애니메이션이 가능한 퍼지 추론 기법을 제안한다. 지금까지 직물과 같은 탄성체를 표현하기 위한 많은 기법들은 질량-스프링 모델을 사용하였다. 직물은 다수의 질량과 스프링의 조합으로 구성되어 변형 가능한 면을 이루게되고, 면의 움직임은 운동법칙을 기반으로 수치적분을 통해 계산될 수 있다. 제안된 방법과 동일한 직물구조에서 Explicit 오일러 방법은 ${\Delta}t$ > 0.01 일 경우 불안정성 문제가 나타났으며, Implicit 오일러 방법은 ${\Delta}t$ = 0.03 에서도 애니메이션이 생성되지만 많은 양의 선형 시스템을 계산해야 하는 단점을 가지고 있어서 실시간 처리에 부적합하다. 본 연구는 질량-스프링 모델에서 질점의 움직임을 계산하기 위하여 ${\Delta}t$ = 0.03을 가지면서도 실시간 처리가 가능한 방법을 제안한다.

Keywords

References

  1. D. Baraff and A. Witkin, "Large Steps in Cloth Simulation," Computer Graphics(Proc. SIGGRAPH), pp.43-54, 1998. https://doi.org/10.1145/280814.280821
  2. G. Celniker and D. Gossard, "Deformable curve and surface finite-elements for free-form shape design," Computer Graphics(Proc. of SIGGRAPH '91), pp.257-266, 1991. https://doi.org/10.1145/122718.122746
  3. M. P. Desbrun, P. Schroder, and A. Barr, "Interactive Animation of Structured Deformable Objects," Proceedings of Graphics Interface '9, pp.1-8, 1999.
  4. B. Eberhardt, A. Weber, and W. Strasser, "A fast, flexible, particle-system model for cloth draping," IEEE Computer Graphics and Applications, pp.52-59, 1996. https://doi.org/10.1109/38.536275
  5. S. Nakamura, "Initial value problems of ordinary differential equations," In Applied Numerical Methods with Software, pp.289-350, Prentice-Hall, 1991.
  6. X. Provot, "Deformation constraints in a mass-spring model to describe rigid cloth behavior," Proc. of Graphics Interface '95, pp.147-154, 1995.
  7. P. Volino, M. Courshesnes, and N. Magneant-Thalmann, "Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects," In Computer Graphics Proceedings, pp.137-144, New York, 1995(8). https://doi.org/10.1145/218380.218432
  8. P. Volino, and N. Magneant-Thalmann, "Implicit Midpoint Integration and Adaptive Damping for Efficient Cloth Simulation," Computer Animation and Virtual Worlds, Wiley, 16(3-4), pp.163-175, 2005. https://doi.org/10.1002/cav.78
  9. B. Wang, Z. Wu, Q. Sun, and M. Yuen, "A deformable model of thin flexible surfaces," Proc. of WSCG'98, pp.440-446, 1998.