• Title/Summary/Keyword: Mass Memory

Search Result 186, Processing Time 0.029 seconds

Data Processing Architecture for Cloud and Big Data Services in Terms of Cost Saving (비용절감 측면에서 클라우드, 빅데이터 서비스를 위한 대용량 데이터 처리 아키텍쳐)

  • Lee, Byoung-Yup;Park, Jae-Yeol;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.570-581
    • /
    • 2015
  • In recent years, many institutions predict that cloud services and big data will be popular IT trends in the near future. A number of leading IT vendors are focusing on practical solutions and services for cloud and big data. In addition, cloud has the advantage of unrestricted in selecting resources for business model based on a variety of internet-based technologies which is the reason that provisioning and virtualization technologies for active resource expansion has been attracting attention as a leading technology above all the other technologies. Big data took data prediction model to another level by providing the base for the analysis of unstructured data that could not have been analyzed in the past. Since what cloud services and big data have in common is the services and analysis based on mass amount of data, efficient operation and designing of mass data has become a critical issue from the early stage of development. Thus, in this paper, I would like to establish data processing architecture based on technological requirements of mass data for cloud and big data services. Particularly, I would like to introduce requirements that must be met in order for distributed file system to engage in cloud computing, and efficient compression technology requirements of mass data for big data and cloud computing in terms of cost-saving, as well as technological requirements of open-source-based system such as Hadoop eco system distributed file system and memory database that are available in cloud computing.

Primary Malignant Melanoma in the Pineal Region

  • Park, Jae-Hyun;Hong, Yong-Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.504-508
    • /
    • 2014
  • A 59-year-old male patient had 5-month history of gait disturbance and memory impairment. His initial brain computed tomography scan showed $3.5{\times}2.8cm$ sized mass with high density in the pineal region. The tumor was hypointense on T2 weighted magnetic resonance images and hyperintense on T1 weighted magnetic resonance images with heterogenous enhancement of central portion. The tumor was totally removed via the occipital transtentorial approach. Black mass was observed in the operation field, and after surgery, histopathological examination confirmed the diagnosis of malignant melanoma. Whole spine magnetic resonance images and whole body 18-fluoro-deoxyglucose positron emission tomography could not demonstrate the primary site of this melanoma. Scrupulous physical examination of his skin and mucosa was done and dark pigmented lesion on his left leg was found, but additional studies including magnetic resonance images and skin biopsy showed negative finding. As a result, final diagnosis of primary pineal malignant melanoma was made. He underwent treatment with the whole brain radiotherapy and extended local boost irradiation without chemotherapy. His preoperative symptoms were disappeared, and no other specific neurological deficits were founded. His follow-up image studies showed no recurrence or distant metastasis until 26 weeks after surgery. Primary pineal malignant melanomas are extremely rare intracranial tumors, and only 17 cases have been reported since 1899. The most recent case report showed favorable outcome by subtotal tumor resection followed by whole brain and extended local irradiation without chemotherapy. Our case is another result to prove that total tumor resection with radiotherapy can be the current optimal treatment for primary malignant melanoma in the pineal region.

Anticholinesterase activity of Cinnamomum zeylanicum L. leaf extract

  • Dalai, Manoj Kumar;Bhadra, Santanu;Chaudhary, Sushil Kumar;Chanda, Joydeb;Bandyopadhyay, Arun;Mukherjee, Pulok K.
    • CELLMED
    • /
    • v.4 no.2
    • /
    • pp.11.1-11.6
    • /
    • 2014
  • Cinnamomum zeylanicum (C. zeylanicum) is a tropical evergreen tree of Lauraceae family. It is one of the oldest culinary spices known and used traditionally in many cultures for centuries. In addition to its culinary uses, cinnamon also possesses as a folk remedy of many health disease condition including analgesic, antiseptic, antispasmodic, aphrodisiac, astringent, carminative, haemostatic, insecticidal, and parasiticide and memory enhancing property. This study was aimed to assess the acetylcholinesterase and butyrylcholinesterase inhibitory activity of standardized methanol extract of the C. zeylanicum. Gas chromatography - mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC) analysis were done to identify the presence of eugenol as chemical component and support the neuroprotective activity in the extract. Anticholinesterase inhibitory activity of crude methanol extract of C. zeylanicum leaves and cinnamon oil were evaluated by 96-well microtiter plate assay and thin layer chromatography bioassay detection methods. This study revealed that cinnamon oil ($IC_{50}:45.88{\pm}1.94{\mu}g/ml$) has better anticholinesterase activity than methanol extract ($IC_{50}:77.78{\pm}0.03{\mu}g/ml$). In HPLC analysis, retention time of eugenol in cinnamon oil was found to be 15.81 min which was comparable with the retention time (15.99 min) of the reference standard, eugenol. Seven chemical compounds were identified by GC-MS analysis, in which eugenol as an important phytoconstituents. Thus the phytochemicals from C. zeylanicum methanol leaves extract could be developed as potential source of anticholinesterase activity, with particular benefit in the symptomatic treatment of Alzheimer's disease.

A Mass-Processing Simulation Framework for Resource Management in Dense 5G-IoT Scenarios

  • Wang, Lusheng;Chang, Kun;Wang, Xiumin;Wei, Zhen;Hu, Qingxin;Kai, Caihong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4122-4143
    • /
    • 2018
  • Because of the increment in network scale and test expenditure, simulators gradually become main tools for research on key problems of wireless networking, such as radio resource management (RRM) techniques. However, existing simulators are generally event-driven, causing unacceptably large simulation time owing to the tremendous number of events handled during a simulation. In this article, a mass-processing framework for RRM simulations is proposed for the scenarios with a massive amount of terminals of Internet of Things accessing 5G communication systems, which divides the time axis into RRM periods and each period into a number of mini-slots. Transmissions within the coverage of each access point are arranged into mini-slots based on the simulated RRM schemes, and mini-slots are almost fully occupied in dense scenarios. Because the sizes of matrices during this process are only decided by the fixed number of mini-slots in a period, the time expended for performance calculation is not affected by the number of terminals or packets. Therefore, by avoiding the event-driven process, the proposal can simulate dense scenarios in a quite limited time. By comparing with a classical event-driven simulator, NS2, we show the significant merits of our proposal on low time and memory costs.

Recent Trend of International Standardization of Semiconductor Devices (반도체 소자 국제 표준화 최근 동향 연구)

  • Choa, Sung-Hoon;Han, Tae-Su;Kim, Wonjong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Nowadays, the importance of role of the international standardization keeps increasing substantially. We have already known that international standards have a huge impact on many companies, industries and nations. So far, it has been thought that standardizations are needed after the new products come into the market and are mass-produced in order to encourage the use of the products, systems and services. Standardization will make the products more safe, efficient, and environmentally friendly for the users. However, in these days, a paradigm of the standardization has been changed. International standard becomes a tool for dominating global market and is the most important ingredients of the competitiveness and economic progress of the nation and enterprises. Many countries like Japan, Germany and U.S. use the standardization as an effective method to dominate the market and monopolized the new technologies. Therefore, worldwide competition for the standardization of the new technology become fierce. Korea is leading the technology in semiconductor field. However, activities of international standardization are not sufficient. In order to boost the standardization activities in Korea from industry, academia, and research institute, this paper briefly introduce the international standard organization and some critical issues for next-generation semiconductor memory such as flexible semiconductor, automobile semiconductor and wearable devices.

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Dynamic Analysis of a Tilted HDD Spindle System due to Roundness (진원도 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.840-846
    • /
    • 2007
  • This paper investigates the dynamic behavior of a HDD spindle system due to the imperfect roundness of a rotating shaft. The shaft of a spindle motor rotates with eccentricity by the unbalanced mass of the rotating part. The eccentricity generates the run-out of a spindle motor which results in the eccentric motion of a rotating part. Roundness of a shaft affects this motion which limits the memory capacity of a HDD. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the roundness. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to characterize the motion of a rotating part. This research shows that the roundness of a rotating shaft causes the excitation frequency with integer multiple of a rotating frequency.

  • PDF

Implementation of SpaceWire Link Interface for STSAT-3 (과학기술위성 3호를 위한 스페이스와이어 링크 인터페이스 구현)

  • Ryu, Sang-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2010
  • SpaceWire is a standard for high-speed links and networks between spacecraft components, which was invented for better, cheaper, faster on-board data handling in spacecraft. SpaceWire is being widely used on many space missions by ESA, NASA and JAXA, and is expected to be used in future satellite development programs in Korea. For flexible and efficient application of SpaceWire, it is necessary to secure the related technologies. This paper describes the development, implementation and test of a SpaceWire link interface, which will be incorporated in MMU(Mass Memory Unit) of STSAT-3(Science & Technology Satellite-3).

A Study on the Etching Characteristics of $YMnO_3$ Thin Films in High Density $Cl_2/Ar$ Plasma (고밀도 $Cl_2/Ar$ 플라즈마를 이용한 $YMnO_3$ 박막의 식각 특성에 관한 연구)

  • 민병준;김창일;장의구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • Ferroelectric YMnO$_3$thin films are excellent dielectric materials for high integrated ferroelectric random access memory (FRAM) with metal-ferroelectric-silicon field effect transistor (MFSFET) structure. In this study, YMnO$_3$thin films were etched with Cl$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$thin films is 285 $\AA$/min under Cl$_2$/Ar of 10/0, 600 W/-200 V and 15 mTorr. The selectivities of YMnO$_3$over CeO$_2$and $Y_2$O$_3$are 2.85, 1.72, respectively. The results of x-ray photoelectron spectroscopy (XPS) reflect that Y is removed dominantly by chemical reaction between Y and Cl, while Mn is removed more effective by Ar ion bombardment than chemical reaction. The results of secondary ion mass spectrometer (SIMS) were equal to these of XPS. The etch profile of the etched YMnO$_3$film is approximately 65$^{\circ}$and free of residues at the sidewall.

  • PDF

Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance (가공 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF