• Title/Summary/Keyword: Masonry structure

Search Result 199, Processing Time 0.019 seconds

Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations

  • Mukhtiar Ali Soomro;Dildar Ali Mangnejo;Naeem Mangi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.251-265
    • /
    • 2023
  • In urban construction projects, it is crucial to evaluate the impacts of excavation-induced ground movements in order to protect surrounding structures. These ground movements resulting in damages to the neighboring structures and facilities (i.e., parking basement) are of main concern for the geotechnical engineers. Even more, the danger exists if the nearby structure is an ancient or masonry brick building. The formations of cracks are indicators of structural damage caused by excavation-induced ground disturbances, which pose issues for excavation-related projects. Although the effects of deep excavations on existing brick masonry walls have been thoroughly researched, the impact of twin excavations on a brick masonry wall is rarely described in the literature. This work presents a 3D parametric analysis using an advanced hypoplastic model to investigate the responses of an existing isolated brick masonry wall to twin perpendicular excavations in dry sand. One after the other, twin perpendicular excavations are simulated. This article also looks at how varying sand relative densities (Dr = 30%, 50%, 70%, and 90%) affect the masonry wall. The cracks at the top of the wall were caused by the hogging deformation profile caused by the twin excavations. By raising the relative density from 30% to 90%, excavation-induced footing settlement is greatly minimized. The crack width at the top of the wall reduces as a result of the second excavation in very loose to loose sand (Dr = 30% and 50%). While the crack width on the top of the wall increases owing to the second excavation in medium to very dense sand (Dr = 70% and 90%).

Architectural Characteristics of Railway Station Water Towers in Korea - Focused on the Existing Railway Station Water Towers - (철도역사 급수탑의 건축적 특성에 관한 연구 - 현존하는 급수탑을 중심으로 -)

  • Kim, Jong-Hun;Yoo, Uoo-Sang;Woo, Don-Son
    • Journal of architectural history
    • /
    • v.15 no.2
    • /
    • pp.7-22
    • /
    • 2006
  • The Industrial Revolution brought a variety of new forms of structure, and as a group they are usually called 'industrial architecture'. Steam engines contributed greatly to architecture with a unique structure called 'water tower' to provide water for steam engines, especially the adoption of it. This study is to examine the changes of the building materials and architectural features of the water towers of railway stations built in the early twentieth century in South Korea. This study also attempts to describe the modern features of the industrial architecture, which did not get a chance to be noticed. Through this examination on water tower, which is a part of industrial architecture with sheer integration of function and pure geometric form, we would like to find the meaning of modern architecture in Korea. As we can see in the Korean oldest railway station water tower constructed in masonry at Yeonsan Station in 1911, early water towers were divided into the masonry machine room and the steel water tank. However, the masonry structure was soon turned into concrete structure with its formal features maintained as it was. The steel water tank was also replaced with concrete structure. As a result, while its basic structure remained, concrete structure had substituted for the every components of water tower. Concrete-built water towers were the high-tech architecture of that time and the most perfect structures built in concrete. Nevertheless, the perfection of the water tower form and the technology it attained were not transferred to other modern and contemporary architecture in South Korea. Since the subject to railway station water towers was the Japanese government, and steam engines were replaced with diesels in the midst of a complicated domestic situation after the independence, the need for water towers in railway stations disappeared and therefore, it became ignored and was difficult to look over the architectural features and values of early railway station water towers.

  • PDF

Dynamic Response of Unreinforced Masonry Building (비보강 조적조의 동적 거동)

  • Kim, Nam-Hee;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.1-14
    • /
    • 2004
  • The seismic behavior of a 1/3-scale model of a two-story unreinforced masonry (URM) structure typically used in constructing low-rise residential buildings in Korea is studied through a shaking table test. The purposes of this study are to investigate seismic behavior and damage patterns of the URM structure that was not engineered against seismic loading and to provide its experimental test results. The test structure was symmetric about the transverse axis but asymmetric to some degrees about longitudinal axis and had a relatively strong diaphragm of concrete slab. The test structure was subjected to a series of differentlevels of earthquake shakings that were applied along the longitudinal direction. The measured dynamic response of the test structure was analyzed in terms of various global parameters (i.e., floor accelerations, base shear, floor displacements and storydrift, and torsional displacements) and correlated with the input table motion. Moreover, different levels of seismic performance were suggested for performance-based design approach. The results of the shaking table test revealed that the shear failure was dominant on a weak side of the 1stfloor while the upper part of the test model remained as a rigid body. Also, it was found that substantial strength and deformation capacity existed after cracking.

Dynamic Characteristics and Compressive Stress of Multi-Layered Structure (적층 구조물의 압축응력과 동적특성)

  • Shon, Ho-Woong;Lee, Sung-Min
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.63-71
    • /
    • 2006
  • When surveying the cultural heritages especially in the case of stone structures, preserving their originalstate is of primary importance. For the effective assessment of survey results of stone structure, thedynamic characteristics of that system should be considered. Dynamic characteristics of stone masonry structures depend on several factors such as coefficients of friction, contact conditions, and number of layers of bonding stones. These factors can be estimated by using the dynamic analysis results. This paper describes a method for natural frequency determination of traditional stone arch bridge subjected to compressive force. For this purpose, multi-layered granite brick models of for arch bridge were made and fundamental frequencies corresponding increasing axial forces were measured.

  • PDF

Seismic evaluation of masonry railroad tunnels (조적식 철도터널의 내진성능평가에 관한 연구)

  • Lee, In-Mo;Jeong, Kyeong-Han;Lee, Jun-Suk;Choi, Jin-Yu;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2002
  • Domestic masonry railroad tunnel lining consists of red bricks or granite stone blocks and mortar. It is necessary to evaluate the behaviour of the masonry tunnel lining during an earthquake because the lining was constructed without the consideration of seismic loads. In this study, a methodology to evaluate the seismic resistant capacity of masonry tunnel linings was proposed, i.e. material property evaluation and seismic analysis technique. The red brick masonry tunnel lining is arrayed with multi-layers composed of 3 to 5 bricks depending on ground conditions and each brick is attached with mortar. Equivalent property concept was adopted to consider the stiffness difference among the red brick material itself and joints between bricks. Response spectrum analysis was performed by considering ground-structure interactions. A parametric study was performed to figure out the effect of relative stiffness between the lining and rock mass on the seismic behavior. A resonable countermeasure to minimize the earthquake-induced damage was also proposed.

  • PDF

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

Collapse mechanism estimation of a historical slender minaret

  • Nohutcu, H.;Hokelekli, E.;Ercan, E.;Demir, A.;Altintas, G.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.653-660
    • /
    • 2017
  • The aim of this study is to accurately estimate seismic damage and the collapse mechanism of the historical stone masonry minaret "Hafsa Sultan", which was built in 1522. Surveying measurements and material tests were conducted to obtain a 3D solid model and the mechanical properties of the components of the minaret. The initial Finite Element (FE) model is analyzed and numerical dynamic characteristics of the minaret are obtained. The Operational Modal Analysis (OMA) method is conducted to obtain the experimental dynamic characteristics of the minaret and the initial FE model is calibrated by using the experimental results. Then, linear time history (LTH) and nonlinear time history (NLTH) analyses are carried out on the calibrated FE model by using two different ground motions. Iron clamps which used as connection element between the stones of the minaret considerably increase the tensile strength of the masonry system. The Concrete Damage Plasticity (CDP) model is selected in the nonlinear analyses in ABAQUS. The analyses conducted indicate that the results of the linear analyses are not as realistic as the nonlinear analysis results when compared with existing damage.

A Study on the Strengthening effect of Concrete Reinforcement Bracket on the External Clay Brick Wall (외부치장적벽돌 벽체에 대한 콘크리트 보강브라켓의 보강효과에 관한 연구)

  • Kim, Sun-Woo;Kim, Yang-Jung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.117-118
    • /
    • 2020
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware (connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. The purpose of this study is to provide numerical information on the reinforcement design by experimentally studying the structural performance of concrete reinforcement brackets that reinforce the vertical load of the exterior wall.

  • PDF

Seismic analysis of a masonry cross vault through shaking table tests: the case study of the Dey Mosque in Algiers

  • Rossi, Michela;Calderini, Chiara;Roselli, Ivan;Mongelli, Marialuisa;De Canio, Gerardo;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.57-72
    • /
    • 2020
  • This paper presents the results of a monodirectional shaking table test on a full-scale unreinforced masonry cross vault characterized by asymmetric boundary conditions. The specimen represents a vault of the mosque of Dey in Algiers (Algeria), reproducing in detail the mechanical characteristics of masonry, and the constructive details including the presence of some peculiar wooden logs placed within the vault's abutments. The vault was tested with and without the presence of two steel bars which connect two opposite sides of the vault. The dynamic behaviour of both the vault's configurations were studied by using an incremental dynamic analysis up to the collapse of the vault without the steel bars. The use of an innovative high-resolution 3D optical system allowed measure displacement data of the cross vault during the shake table tests. The experimental results were analysed in terms of evolution of damage mechanisms, and in-plane and out-of-plane deformations. Moreover, the dynamic properties of the structure were investigated by means of an experimental modal analysis.