DOI QR코드

DOI QR Code

Seismic analysis of a masonry cross vault through shaking table tests: the case study of the Dey Mosque in Algiers

  • Rossi, Michela (Department of Civil, Chemical and Environmental Engineering, University of Genoa) ;
  • Calderini, Chiara (Department of Civil, Chemical and Environmental Engineering, University of Genoa) ;
  • Roselli, Ivan (ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development) ;
  • Mongelli, Marialuisa (ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development) ;
  • De Canio, Gerardo (ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development) ;
  • Lagomarsino, Sergio (Department of Civil, Chemical and Environmental Engineering, University of Genoa)
  • Received : 2018.10.09
  • Accepted : 2019.09.27
  • Published : 2020.01.25

Abstract

This paper presents the results of a monodirectional shaking table test on a full-scale unreinforced masonry cross vault characterized by asymmetric boundary conditions. The specimen represents a vault of the mosque of Dey in Algiers (Algeria), reproducing in detail the mechanical characteristics of masonry, and the constructive details including the presence of some peculiar wooden logs placed within the vault's abutments. The vault was tested with and without the presence of two steel bars which connect two opposite sides of the vault. The dynamic behaviour of both the vault's configurations were studied by using an incremental dynamic analysis up to the collapse of the vault without the steel bars. The use of an innovative high-resolution 3D optical system allowed measure displacement data of the cross vault during the shake table tests. The experimental results were analysed in terms of evolution of damage mechanisms, and in-plane and out-of-plane deformations. Moreover, the dynamic properties of the structure were investigated by means of an experimental modal analysis.

Keywords

References

  1. Abdessemed-Foufa, A. (2012), "Visual screening for a potential evaluation of seismic vulnerability of historical building: Palace of the Dey (Citadel of Algiers)", WIT Transac. Built Envir., 123, 119-123. https://doi.org/10.2495/DSHF120101
  2. Abdessemed Foufa, A., Terki, Y. and Benouar, D. (2015), Case Study: Local Seismic Culture in Vernacular Architecture in Algeria, in Seismic Retrofitting: Learning from Vernacular Architecture, CRC Press, London, U.K.
  3. Atamturktur, S., Pavic, A., Reynolds, P. and Boothby, T. (2009), "Full-scale modal testing of vaulted gothic churches: lessons learned", Exp. Techniq., 33(4), 65-74. https://doi.org/10.1111/j.1747-1567.2009.00523.x.
  4. Boothby, T.E. (2001), "Analysis of masonry arches and vaults", Prog. Struct. Eng. Mater., 3(3), 246-256. https://doi.org/10.1002/pse.84.
  5. Calvo Barentin, C., Van Mele, T. and Block, P. (2017), "Robotically controlled scale-model testing of masonry vault collapse", Meccanica, 53(7), 1917-1929. https://doi.org/10.1007/s11012-017-0762-6.
  6. Cangi, G. (2005), Manuale Del Recupero Strutturale e Antisismico, Manuali per l'edilizia, Italy.
  7. Cattari, S., Resemini, S. and Lagomarsino, S. (2008), "Modelling of vaults as equivalent diaphragms in 3D seismic analysis of masonry buildings", Proceedings of the Sixth International Conference on Structural Analysis of Historic Construction, Bath, U.K, July.
  8. Ceradini, V. (1996), "Modelli sperimentali di volte", In Atti del Convegno Nazionale La Meccanica delle Murature tra Teoria e Progetto, Messina, Italy, September.
  9. Conte, C., Rainieri, C., Aiello, M.A. and Fabbrocino, G. (2011), "On-site assessment of masonry vaults: Dynamic tests and numerical analysis", Geofizika, 28(1), 127-134. https://hrcak.srce.hr/70837.
  10. De Canio, G., de Felice, G., De Santis, S., Giocoli, A., Mongelli, M., Paolacci, F. and Roselli, I. (2016), "Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall", Earthq. Struct., 40(1), 53-71. http://dx.doi.org/10.12989/eas.2016.10.1.053.
  11. De Canio, G., Mongelli, M. and Roselli, I. (2013), "3D motion capture application to seismic tests at ENEA Casaccia research center: 3Dvision system and DySCo virtual lab", WIT Trans. Built Enviro., 134, 803-814.
  12. De Canio, G., Mongelli, M., Tati, A., Roselli, I., Giocoli, A. and Rinaldis, D. (2015), "Structural monitoring of the columns at the Cathedral of Orvieto", Proceedings. of 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-7), Turin, Italy, July.
  13. Gaetani, A., Monti, G., Lourenco, P.B. and Marcari, G. (2016), "Design and analysis of cross vaults along history", Int. J. Arch. Heritage, 10(7), 841-856. https://doi.org/10.1080/15583058.2015.1132020.
  14. Giamundo, V., Lignola, G.P., Maddaloni, G., Balsamo, A., Prota, A. and Manfredi, G. (2015), "Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements", Compos. Part B: Eng., 70, 53-63. https://doi.org/10.1016/j.compositesb.2014.10.039.
  15. Giresini, L., Sassu, M., Butenweg, C., Alecci, V. and De Stefano, M. (2017), "Vault macro-element with equivalent trusses in global seismic analyses", Earthq. Struct., 12(4), 409-423. http://doi.org/10.12989/eas.2017.12.4.409.
  16. Gurrieri, F. (1999), Manuale Per la Riabilitazione e Ricostruzione Post-Sismica Degli Edifici, DEI, Rome, Italy.
  17. Huerta, S. (2004), Arcos, Bovedas y Cupulas. Geometria y Equilibrio en el Calculo Tradicional de Estructuras de Fabrica, Institute Juan Herrera, Madrid, Spain.
  18. Huerta, S. (2008), "The analysis of masonry architecture: a historical approach", Arch. Sci. Rev., 51(4), 297-328. https://doi.org/10.3763/asre.2008.5136.
  19. Lagomarsino, S., Penna, A., Galasco, A. and Cattari, S. (2013), "TREMURI program: An equivalent frame model for the nonlinear seismic analysis of masonry buildings", Eng. Struct., 56, 1787-1799. https://doi.org/10.1016/j.engstruct.2013.08.002.
  20. OPCM (2017), "Misure per il ripristino con miglioramento sismico e la ricostruzione di immobili ad uso abitativo gravemente danneggiati o distrutti dagli eventi sismici verificatisi a far data dal 24 agosto", Report No. 143, Gazzetta Ufficiale, Rome, Italy.
  21. Quinonez, A., Zessin, J., Nutzel, A. and Ochsendorf, J. (2010), "Small-scale models for testing masonry structures", Adv. Mater. Res., 133, 497-502 https://doi.org/10.4028/www.scientific.net/AMR.133-134.497.
  22. Ramaglia, G., Lignola, G.P. and Prota, A. (2016), "Collapse analysis of slender masonry barrel vaults", Eng. Struct., 117(15), 86-100. https://doi.org/10.1016/j.engstruct.2016.03.016.
  23. Roselli, I., Mongelli, M., Tati, A. and De Canio, G. (2015), "Analysis of 3D motion data from shaking table tests on a scaled model of Hagia Irene", Key Eng. Mater., 624, 66-73. https://doi.org/10.4028/www.scientific.net/KEM.624.66.
  24. Rossi, M., Calderini, C. and Lagomarsino, S. (2015), "Seismic Response of Masonry Cross vaults: Experimental Tests and Definition of a Macroelement Model", Atti Del 16th Convegno ANIDIS, L'Aquila, Italy, September.
  25. Rossi, M., Calderini, C. and Lagomarsino, S. (2016), "Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model", Bull. Earq. Eng., 14(1), 261-281. https://doi.org/10.1007/s10518-015-9815-1.
  26. Rossi, M., Calvo Barentin, C., Van Mele, T. and Block, P. (2017), "Experimental study on the behaviour of masonry pavilion vaults on spreading supports", Struct, 11, 110-120. https://doi.org/10.1016/j.istruc.2017.04.008.
  27. Shapiro, E.E. (2012), "Collapse mechanisms of small-scale unreinforced masonry vaults", MsC Dissertation, Massachussets Institute of Technology, Massachussets, U.S.A.
  28. Theodossopoulos, D., Makoond, N. and Akl, L. (2016), "The effect of boundary conditions on the behaviour of pointed masonry barrel vaults: late gothic cases in Scotland", Open Constr. Build. Tech. J., 10(2), 274-292. http://10.2174/1874836801610010274.
  29. Theodossopoulos, D., Sinha, B.P., Usmani, A S. and Macdonald, A.J. (2002), "Assessment of the structural response of masonry cross vaults", Strain, 38(3), 119-127. https://doi.org/10.1046/j.0039-2103.2002.00021.x.
  30. Tralli, A., Alessandri, C. and Milani, G. (2014), "Computational methods for masonry vaults: a review of recent results", Open Civil Eng. J., 8(1), 272-287. http://hdl.handle.net/11311/883050. https://doi.org/10.2174/1874149501408010272
  31. Van Mele, T., McInerney, J., DeJong, M. and Block, P. (2012), "Physical and Computational Discrete Modelling of Masonry Vault Collapse", Proceedings of 8th International Conference on Structural Analysis of Historical Constructions, Wroclaw, Poland, October.

Cited by

  1. Non-linear Pushover Analysis and simulation of progressive collapse mechanisms using FE Models for Nativity Church vol.21, pp.2, 2021, https://doi.org/10.12989/eas.2021.21.2.185