• Title/Summary/Keyword: Masonry

Search Result 607, Processing Time 0.025 seconds

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

Experimental vs. theoretical out-of-plane seismic response of URM infill walls in RC frames

  • Verderame, Gerardo M.;Ricci, Paolo;Di Domenico, Mariano
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.677-691
    • /
    • 2019
  • In recent years, interest is growing in the engineering community on the experimental assessment and the theoretical prediction of the out-of-plane (OOP) seismic response of unreinforced masonry (URM) infills, which are widespread in Reinforced Concrete (RC) buildings in Europe and in the Mediterranean area. In the literature, some mechanical-based models for the prediction of the entire OOP force-displacement response have been formulated and proposed. However, the small number of experimental tests currently available has not allowed, up to current times, a robust and reliable evaluation of the predictive capacity of such response models. To enrich the currently available experimental database, six pure OOP tests on URM infills in RC frames were carried out at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. Test specimens were built with the same materials and were different only for the thickness of the infill walls and for the number of their edges mortared to the confining elements of the RC frames. In this paper, the results of these experimental tests are briefly recalled. The main aim of this study is comparing the experimental response of test specimens with the prediction of mechanical models presented in the literature, in order to assess their effectiveness and contribute to the definition of a robust and reliable model for the evaluation of the OOP seismic response of URM infill walls.

Architectural Characteristics of Pinson Hall, Yonsei University, focused on Usage as University Dormitory from 1922 to 1944 (연세대학교 핀슨홀(Pinson Hall)의 건축적 특징 -1922년~1944년 기숙사로의 사용을 중심으로-)

  • Kim, Ki-Joo;Lee, Yeon-Kyung
    • Journal of architectural history
    • /
    • v.28 no.3
    • /
    • pp.55-66
    • /
    • 2019
  • Pinson Hall is a dormitory building of Chosen Christian College, built in 1922, and it still remains comparatively well preserved as original form. This building is worthy in that it shows the living space of western style college in Korea, as well as characteristics of collegiate gothic style and building technology, designed by western architect in 1920s. At first, based on literate review and field survey, this study aims to trace the construction background and process of Pinson Hall, and find out its architectural characteristics with the original form when it is used as dormitory. Additionally, it deals with historic meaning and value of Pinson Hall as a modern western style college dormitory, through comparison with other dormitories in the same era. In conclusion, Pinson Hall is a Western style dormitory which allows students to accustom themselves to Western life style, using bed and desk, as well as it shows the new building technology in the early 1920s which has mixture of masonry and reinforced concrete structure.

Dynamic Behavior Characteristics of Three-Story Stone Pagoda at Cheollongsa Temple Site by Earthquake (지진에 의한 천룡사지 삼층석탑의 동적거동 특성)

  • Kim, Ho Soo;Kim, Dong Kwan;Jeon, Geon Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-314
    • /
    • 2021
  • The Gyeongju and Pohang earthquakes caused damages to many cultural properties; particularly, stone pagoda structures were significantly damaged among masonry cultural properties. To preserve these structures, it is necessary to understand their dynamic behavior characteristics under earthquakes. Analyses on such areas as deformation, frequency, maximum acceleration, permanent displacement, sliding, and rocking have to be performed. Although many analytical studies have already been conducted, dynamic behavior studies based on experiments are insufficient. Therefore, this study analyzed dynamic behavior characteristics by performing a shaking table experiment on a three-story stone pagoda structure at the Cheollongsa temple site damaged by the Gyeongju earthquake. As a result of the experiment, the displacements of stylobates did not occur significantly, but the tower body parts rotated. In particular, the rotation of the 1F main body stone was relatively larger than that of the other chief body stones because the 1F main body stone is relatively more slender than the other parts. In addition, the decorative top was identified as the component most vulnerable to sliding. This study found that the 1F main body stone is vulnerable to rocking, and the parts located on the upper part are more vulnerable to sliding.

Relationship between Le Corbusier's Errazuris House Project and Antonin Raymond's Karuizawa Villa (르 코르뷔지에의 에라즈리스 주택계획안과 안토닌 레이몬드의 카루이자와 별장의 상관성에 관한 연구)

  • Kim, Kyoung-Yon;Jun, Byung-Kweon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Raymond, who adopted Le Corbusier's Errazuris House Project, built Karuizawa Villa by incorporating Japan's aspiration for Western modern architecture and strong convictions regarding the preservation of traditional culture heritage, which were prevalent in Japan at the time. Despite the controversy over his plagiarism, Karuizawa Villa shows several unique architectural characteristics. First, in terms of the arrangement and access system, the villa has a common space that affords a view of the lake by accessing from the mountain side. Second, in terms of spatial composition, the common space is connected to the mesonnette by placing a trail to enable enjoyment of natural scenery. In particular, personal space is planned in the shape of a cross by connecting several surfaces to the outside in order to secure enjoyment of the natural environment. Lastly, in the aspect of structure and materials, both architectural buildings adopted masonry by using natural stone as well as building materials suitable for each region and climate by using logs in constructing the main columns and beams. Through Karuizawa Villa, Raymond is considered to have established his own style by combining the standard of Western modern architecture and the elements of Japanese traditional architecture while valuing local architectural technology.

From the Functional to the Monumental: The Construction of the Pyongyang Station, 1907-1958 (기능에서 상징으로: 평양역사 건설, 1907-1958)

  • Park, Dongmin
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.4
    • /
    • pp.115-126
    • /
    • 2019
  • Construction of the Pyongyang Railroad Station began in 1907 as an important foothold for the Japanese colonization of the Korean Peninsula and the further invasion of Manchuria. As Pyongyang gradually grew in size and political significance, the Pyongyang Station came to have two responsibilities: Fulfill its functional role and serve as a monument to the growing dignity of the city. This study argues that the Pyongyang Station, newly rebuilt in 1958, was the first building to solve the demands for both functional expansion and the pursuit of monumentality. Stylistically, the original single-story wooden building became a three-story classical masonry building. The stylistic change symbolizes the political shift by which the building was reconstructed. The simple wooden building built by the Japanese, representing Pyongyang's status as a colonial provincial town, was transformed into an imposing gateway for the capital city of a newly born socialist state. Socialist Realism, correctly described by its slogan "socialist in content and national in form," harmoniously blended classical architecture, socialist symbols, and Korean local motifs. This study is significant in that it illustrates the historical changes and continuity of the Pyongyang Station from 1907, when it was first built, through the "liberated space" to the postwar reconstruction period of the 1950s.

Construction of Spatial Information Big Data for Urban Thermal Environment Analysis (도시 열환경 분석을 위한 공간정보 빅데이터 구축)

  • Lee, Jun-Hoo;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.53-58
    • /
    • 2020
  • The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.

Structural Characteristics Analysis of Stone Contact Surface according to Surface Roughness and Filling Material of Stone Pagoda Structure (석탑구조물의 표면거칠기 및 충전재에 따른 석재접촉면의 구조특성 분석)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Lee, Seung-Hee;Kim, Derk-Moon;Jo, Sang-Sun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.19-27
    • /
    • 2018
  • The stone pagoda structure is treated as a discontinuous masonry structure, and the contact surface characteristics between stones is a very important factor in the discontinuum behavior analysis. So, it is necessary to find out material and structural characteristics of stone contact surface to perform the structural analysis for safety evaluation. Accordingly, it is important to analyze the material properties of stone surface and secure the structural characteristics through various contact surface states. Therefore, in this study, various test specimens applying the filler between the surface roughness and the stone in the contact surface treatment technique of the stone pagoda were manufactured, and compression test and shear test were carried out. Also, we analyzed the material and structural characteristics of the stone contact surface through the comparison of experimental results.

Impact of adjacent excavation on the response of cantilever sheet pile walls embedded in cohesionless soil

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.293-312
    • /
    • 2022
  • Cantilever sheet pile walls having section thinner than masonry walls are generally adopted to retain moderate height of excavation. In practice, a surcharge in the form of strip load of finite width is generally present on the backfill. So, in the present study, influence of strip load on cantilever sheet pile walls is analyzed by varying the width of the strip load and distance from the cantilever sheet pile walls using finite difference based computer program in cohesionless soil modelled as Mohr-Coulomb model. The results of bending moment, earth pressure, deflection and settlement are presented in non-dimensional terms. A parametric study has been conducted for different friction angle of soil, embedded depth of sheet pile walls, different magnitudes and width of the strip load acting on the ground surface and at a depth below ground level. The result of present study is also validated with the available literature. From the results presented in this study, it can be inferred that optimum behavior of cantilever sheet pile walls is observed for strip load having width 2 m to 3 m on the ground surface. Further as the depth of strip load below the ground surface increases below the ground level to 0.75 times excavation height, the bending moment, settlement, net earth pressure and deflection decreases and then remains constant.

The 26 september 2019 Istanbul Earthquake, its characteristics and reminders

  • Gullu, Ahmet;Yuksel, Ercan
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.75-85
    • /
    • 2022
  • The megacity Istanbul was struck by an earthquake on September 26, 2019, with a moment magnitude (Mw) of 5.8. The mainshock was followed by many aftershocks. Although the peak ground acceleration (PGA) of the mainshock was as low as 0.08 g, its effect has been more than expected. The intensive reconnaissance studies were accomplished in the highly populated Zeytinburnu and Pendik districts of Istanbul. While the earthquake (EQ) was relatively smaller concerning record-specific intensity measures; the damages such as concrete spalling in reinforced concrete (RC) members, detachment and diagonal cracking of infill walls in RC frames as well as cracks in masonry structures were reported from non-engineered and some engineered buildings. Many studies in the literature state that record-specific intensity measures are not sufficient to evaluate the seismic performance of the structures. The structure-specific intensity measures, soil characteristics, as well as significant duration, energy, and frequency content of EQs should be considered for the evaluation. Dependently, the frequency and energy contents of the Istanbul Earthquake are evaluated to discuss the possible reasons for the perceived effects and the damages. It is concluded that the EQ caused resonance effects on a variety of structures because of its complex frequency content as well as rather low building quality.