• 제목/요약/키워드: Markov modeling

검색결과 272건 처리시간 0.023초

Prediction of Transmembrane Protein Topology Using Position-specific Modeling of Context-dependent Structural Regions

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권3호
    • /
    • pp.683-693
    • /
    • 2005
  • This paper presents a new transmembrane Protein topology prediction method which is an attempt to model the topological rules governing the topogenesis of transmembrane proteins. Context-dependent structural regions of the transmembrane protein are used as basic modeling units in order to effectively represent their topogenic roles during transmembrane protein assembly. These modeling units are modeled by means of a tied-state hidden Markov model, which can express the position-specific effect of amino acids during ransmembrane protein assembly. The performance of prediction improves with these modeling approaches. In particular, marked improvement of orientation prediction shows the validity of the proposed modeling. The proposed method is available at http://bioroutine.com/TRAPTOP.

  • PDF

계층적 모델을 이용한 단일 센서 노드의 가용성 분석 (Availability Analysis of Single Sensor Node using Hierarchical Model)

  • 윤영현
    • 디지털산업정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.87-93
    • /
    • 2009
  • In this paper, we propose and evaluate the availability of single sensor node using a hierarchial modeling approach. We divides a sensor node into a software and hardware and analyze failures of each component. We construct Markov chains to represent the components of a sensor node, and then we construct a hierarchical model which use fault tree in upper level and Markov chains in lower level. We evaluate the availability and down of single sensor node.

클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안 (Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields)

  • 한희얼;박수빈
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.157-165
    • /
    • 2011
  • 본 논문에서는 마르코프 랜덤 필드(Markov random fields: MRF) 기반으로 배경을 모델링하는 방식과 함께 관련 파라미터들을 추정하는 알고리즘을 제안한다. 화소 기반의 배경 모델링 기법은 인근 화소 간의 연관성을 고려하지 않고 화소 단위의 시간적 변화에 대한 통계적 특성에 주로 의존하므로 판정 오류를 줄이는데 한계가 있다. 제안 알고리즘은 화소 기반으로 배경 모델을 일차적으로 수행한 다음 MRF를 이용하여 시공간적으로 인근한 화소 간의 상호 의존성을 활용하여 배경모텔의 정확도를 향상시키는데 그 목적을 두고 있다. MRF는 기본적으로 파라미터의 크기에 매우 민감하므로 기존의 MRF 기반 알고리즘은 이미지에 따라 적절한 값을 사전에 구하여 적용하고 있다. 제안한 방식은 초기에 임의의 파라미터로 배경/전경 상태변수를 구한 후에 이의 통계적 특성을 이용하여 파라미터들을 추정하고 추정된 파라미터를 적용하여 상대변수를 재차 구하는 과정을 반복함으로써 최적의 파라미터에 적응적으로 수렴하도록 조정한다. 실내외의 다양한 환경에서 촬영한 비디오를 이용하여 제안한 방식 성능을 확인한다.

멀티클래스 손실시스템의 마코프 모델링 (Markov Modeling of Multiclass Loss Systems)

  • 나성룡
    • 응용통계연구
    • /
    • 제23권4호
    • /
    • pp.747-757
    • /
    • 2010
  • 이 논문에서는 여러 종류의 고객을 서비스하는 멀티클래스 손실시스템의 상태를 마코프 확률과정으로 표현하고 분석하는 방법을 연구한다. 특히 손실시스템에 대한 유니트 개념을 설명하고 등확률 유니트 배정을 운용하는 경우를 중점적으로 다룬다. 상태방정식을 이용하여 극한확률을 구하는 방법을 연구하고 손실확률 등의 성능척도를 산출한다. 간단한 시스템에 대한 분석을 통하여 일반적인 시스템의 특성을 알아본다.

dPCA-HMM을 이용한 전투기 조종사 모델링 연구 (A Study on Modeling of Fighter Pilots Using a dPCA-HMM)

  • 최예림;전승욱;박종헌;신동민
    • 한국항공우주학회지
    • /
    • 제43권1호
    • /
    • pp.23-32
    • /
    • 2015
  • 전투기 조종사 모델링은 국방 M&S(Modeling & Simulation)를 활용한 전쟁 모의 및 전투 실험의 기초 기술로 국방 M&S의 중요성이 대두됨에 따라 연구의 필요성이 높아지고 있다. 특히, 최근 전투 로그의 축적으로 통계적 학습 기법을 활용한 모델링의 적용이 가능해졌으며 전투 로그의 시계열적 특성을 반영할 수 있는 HMM(Hidden Markov Model)이 적합하다. 하지만 HMM은 이산형 혹은 연속형 중 한 형태의 변수만을 통해 학습되므로 이형 변수로 구성된 전투 로그에 적용을 위해서는 형변환 과정이 필요하다. 따라서 본 논문에서는 형변환을 위한 dPCA(Discrete Principal Component Analysis)와 HMM을 접목한 dPCA-HMM 기반 조종사 모델링 방법을 제안한다. 국방과학연구소 관급 시뮬레이터로부터 생성된 전투 로그를 이용한 비교 실험을 통해 제안하는 방법론의 성능을 평가하였으며, 만족스러운 성능을 나타내었다.

Generalized Reliability Centered Maintenance Modeling Through Modified Semi-Markov Chain in Power System

  • Park, Geun-Pyo;Heo, Jae-Haeng;Lee, Sang-Seung;Yoon, Yong-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.25-31
    • /
    • 2011
  • The purpose of power system maintenance is to prevent equipment failure. The maintenance strategy should be designed to balance costs and benefits because frequent maintenance increases cost while infrequent maintenance can also be costly due to electricity outages. This paper proposes maintenance modeling of a power distribution system using reliability centered maintenance (RCM). The proposed method includes comprehensive equipment modeling and impact analysis to evaluate the effect of equipment faults. The problem of finding the optimum maintenance strategy is formulated in terms of dynamic programming. The applied power system is based on the RBTS Bus 2 model, and the results demonstrate the potential for designing a maintenance strategy using the proposed model.

Decision-Tree-Based Markov Model for Phrase Break Prediction

  • Kim, Sang-Hun;Oh, Seung-Shin
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.527-529
    • /
    • 2007
  • In this paper, a decision-tree-based Markov model for phrase break prediction is proposed. The model takes advantage of the non-homogeneous-features-based classification ability of decision tree and temporal break sequence modeling based on the Markov process. For this experiment, a text corpus tagged with parts-of-speech and three break strength levels is prepared and evaluated. The complex feature set, textual conditions, and prior knowledge are utilized; and chunking rules are applied to the search results. The proposed model shows an error reduction rate of about 11.6% compared to the conventional classification model.

  • PDF

Bayesian Conjugate Analysis for Transition Probabilities of Non-Homogeneous Markov Chain: A Survey

  • Sung, Minje
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.135-145
    • /
    • 2014
  • The present study surveys Bayesian modeling structure for inferences about transition probabilities of Markov chain. The motivation of the study came from the data that shows transitional behaviors of emotionally disturbed children undergoing residential treatment program. Dirichlet distribution was used as prior for the multinomial distribution. The analysis with real data was implemented in WinBUGS programming environment. The performance of the model was compared to that of alternative approaches.

마코프 체인을 이용한 모바일 악성코드 예측 모델링 기법 연구 (Research on Mobile Malicious Code Prediction Modeling Techniques Using Markov Chain)

  • 김종민;김민수;김귀남
    • 융합보안논문지
    • /
    • 제14권4호
    • /
    • pp.19-26
    • /
    • 2014
  • 모바일 악성코드는 웜에 의한 전파가 대표적이며, 웜의 확산 특징을 분석하기 위한 모델링 기법들이 제시되었지만 거시적인 분석만 가능하였고 특정 바이러스, 악성코드에 대해 예측하기는 한계점이 있다. 따라서 본 논문에서는 과거의 악성코드 데이터를 활용하여 미래의 악성코드의 발생을 예측 할 수 있는 마코프 체인을 기반으로 한 예측 방법을 제시하였다. 마코프 체인 예측 모델링에 적용할 악성코드 평균값은 전체 평균값, 최근 1년 평균값, 최근 평균값(6개월)의 세 가지 범위로 분류하여 적용하였고, 적용하여 얻어진 예측 값을 비교하여 최근 평균 값(6개월)을 적용하는 것이 악성코드 예측 확률을 높일 수 있음을 확인하였다.

무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석 (Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model)

  • 왕송;천승만;박종태
    • 한국통신학회논문지
    • /
    • 제34권9B호
    • /
    • pp.867-875
    • /
    • 2009
  • 무선 신체망 (WBAN: Wireless Body Area Network)은 생체 신호를 검출하고 전송하기 때문에 인간의 생명과 직결되어 있다 그러므로 무선 신체망은 다른 망과 비교해 망의 신뢰성이 극도로 높아야 하기 때문에 이 신뢰성과 관련된 연구가 매우 중요한 분야로 부각되고 있다. 본 논문에서는 다중 오류 (multi-type failures) 가 발생한 무선 신체 망에서 노드의 오동작들에 대해 분석하고 오동작 분석에 대한 새로운 모델을 제시한다. 오동작 모델링을 위해, 각 노드들을 라우팅 기능의 유무에 따라 분류하고, 노드의 에너지가 완전 소비되었거나 노드가 악의적인 공격에 의해 오류가 발생되었을 경우 각 노드들의 동작을 세미 마르코프 프로세스 (Semi-Markov Process)를 이용하여 모델링하였다. 본 논문에서 제시된 모델은 다중 오류 (multi-type failures) 환경에서 무선신체망의 신뢰성 분석에 매우 유용하다.