References
- Anderson, T. W. and Goodman, L. A. (1957). Statistical inference about Markov chains, The Annals of Mathematical Statistics, 28, 89-110. https://doi.org/10.1214/aoms/1177707039
- Bernardo, J. M. and Smith, F. M. (1994). Bayesian Theory, John Wiley & Sons, New York.
- Billingsley, P. (1961). Statistical methods in Markov chains, The Annals of Mathematical Statistics, 32, 12-40. https://doi.org/10.1214/aoms/1177705136
- Duncan, G. and Lin, L. (1972). Inference for Markov chains having stochastic entry and exit, Journal of the American Statistical Association, 67, 761-767. https://doi.org/10.1080/01621459.1972.10481289
- Lee, T. C., Judge, G. G. and Zellner, A. (1970). Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data, North-Holland and Pub. Co., Amsterdam.
- Meshkani, M. R. and Billard, L. (1992). Empirical Bayes estimators for a finite Markov chain, Biometrika, 79, 185-193. https://doi.org/10.1093/biomet/79.1.185
- Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and applications, Journal of American Statistical Association, 78, 47-65. https://doi.org/10.1080/01621459.1983.10477920
- Nhan, N. (1998). Assessing Change Among Patients in Residential Treatment, Technical Report, Graydon Manor Research Department, Virginia.
- Spiegelhalter, D., Thomas, A., Best, N. and Gilks, W. (1996). Bayesian Inference Using Gibbs Sam-pling Manual (version ii), MRC Biostatistics University, Cambridge University.
- Spiegelhalter, D., Best, N., Carlin, B. and van der Linde, A. (2002). Bayesian Measures of Model Complexity and Fit (with discussion), Journal of the Royal Statistical Society, Series B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Sung, M., Soyer, R. and Nhan, N. (2007). Bayesian analysis of non-homogenous Markov chains:Application to mental health data, Statistics in Medicine, 26, 3000-301 https://doi.org/10.1002/sim.2775