• Title/Summary/Keyword: Markov modeling

Search Result 272, Processing Time 0.027 seconds

내장형 AVTMR 시스템의 하드웨어 및 소프트웨어 신뢰성 분석 (Hardware and Software Dependability Analysis of Embedded AVTMR(All Voting Triple Modular Redundancy) System)

  • 김현기
    • 한국통신학회논문지
    • /
    • 제34권7B호
    • /
    • pp.744-750
    • /
    • 2009
  • 본 논문에서는 신뢰성을 명가하는 데 있어서 소프트웨어 및 하드웨어 측면을 고려한 통합된 마코브 모델링(Markov modeling)으로 AVTMR(AlI Voting Triple Modular Redundancy) 시스템의 신뢰성을 분석한다. 본 시스템의 모델링은 하드웨어의 경우에 고장율이 시불변 특성을 가지며, 소프트웨어 경우에는 시 가변 특성으로 모델링되어 AVTMR 시스템과 단일 시스템에 대한 신뢰성 비교를 한다. 특히, 소프트웨어적인 특성은 G-O/NHPP 기법을 이용하여 분석이 되며, AVTMR 시스템의 전체적인 특성을 소프트웨어 및 하드웨어적인 관점에서 고장율 따른 특성을 이해할 수 있게 된다. 평가된 AVTMR 은 엄베디드 통신 시스템, 항공기 등의 결함 허용 시스댐에 요구되는 스팩에 맞도록 설계를 하기 위한 기반을 제시한다.

음소길이를 고려한 3-State Hidden Markov Model 에 의한 한국어 음소인식 (Korean Phoneme Recognition Using duration-dependent 3-State Hidden Markov Model)

  • 유현창;이희정;박병철
    • 한국음향학회지
    • /
    • 제8권1호
    • /
    • pp.81-87
    • /
    • 1989
  • 본 논문은 Markov 모델에 의한 효과적인 한국어 음소모델 작성방식과 인식에 대하여 기술한다. hidden Markov 모델은 음성신호 고유의 비정상성을 효과적으로 모델화할 수 있다. 본 논문에서는 음소의 일련의 변화하는 특성, 즉 천이-안정-천이의 변화를 나타내기 위하여 3상태 음소모델을 제안한다. 또한 음소길이가 인식성능에 영향을 미치는 중요한 요소임을 밝히고 길이를 고려한 3상태 hidden Markov 모델을 사용하여 인식률을 개선시킬 수 있음을 보였다.

  • PDF

Multiple State Hidden Markov Model to Predict Transmembrane Protein Topology

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.1019-1031
    • /
    • 2004
  • This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.

  • PDF

Markov Chain을 이용한 핸드폰 메뉴 선택 예측 (Prediction of Mobile Phone Menu Selection with Markov Chains)

  • 이석원;명노해
    • 대한산업공학회지
    • /
    • 제33권4호
    • /
    • pp.402-409
    • /
    • 2007
  • Markov Chains has proven to be effective in predicting human behaviors in the areas of web site assess, multimedia educational system, and driving environment. In order to extend an application area of predicting human behaviors using Markov Chains, this study was conducted to investigate whether Markov Chains could be used to predict human behavior in selecting mobile phone menu item. Compared to the aforementioned application areas, this study has different aspects in using Markov Chains : m-order 1-step Markov Model and the concept of Power Law of Learning. The results showed that human behaviors in predicting mobile phone menu selection were well fitted into with m-order 1-step Markov Model and Power Law of Learning in allocating history path vector weights. In other words, prediction of mobile phone menu selection with Markov Chains was capable of user's actual menu selection.

토지이용 공간변화 예측의 통계학적 모형에 관한 연구 (A Study on Statistical Modeling of Spatial Land-use Change Prediction)

  • 김의홍
    • Spatial Information Research
    • /
    • 제5권2호
    • /
    • pp.177-183
    • /
    • 1997
  • 토지이용 분류 체계상에서의 종류라는 개념은 토지이용 변화의 분류 체계성에 그대로 적용시킬 수가 있다. 본 연구에서는 선형 판별 함수를 원용하는 최우법(Maximum likelihood method)으로 산출되는 토지이용분류의 공간적 결과와 Markov 전이 행렬 방법으로 산출되는 정량적 결과가 상호 보완하는 의미에서 합성모형으로 통합되었다. 본 연구에서는 다변수 판별 함수의 계산법과 Markov 연쇄행렬 계산법에 관하여 토의되고 그 합성 모형을 대상 지역에 실제 적용하여 그 결과 '90년, '95년 토지이용도가 예측 작성되었다. 모형화의 문제 및 예측의 정확도 역시 더욱 토의 되어야 하며 추후 개선의 여지를 남긴다.

  • PDF

마코프 체인 프로세스를 적용한 해양사고 발생 예측 (Prediction of Marine Accident Frequency Using Markov Chain Process)

  • 장은진;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 추계학술대회
    • /
    • pp.266-266
    • /
    • 2019
  • 해마다 증가하고 있는 해양사고는 기관고장, 충돌, 좌초, 화재 등 다양하게 발생하고 있다. 이러한 해양사고는 대형 인명사고의 위험이 있어 사전에 사고를 예방 하는 게 무엇보다 중요하다. 이를 위해서는 해양사고 발생을 사전에 예측하고 이에 대응할 수 있는 예측 체계가 요구된다. 본 연구에서는 과거에 발생한 데이터를 근거로 미래를 예측할 수 있는 마코프 체인 프로세스(Markov Chain Process)를 적용하여 해양사고 발생을 사전에 예측하기 위한 모델링을 제안한다. 제시된 모델링을 적용하여 미래 발생 가능한 해양사고 발생 확률을 산출하고 실제 발생한 빈도와 비교하였다. 또한 많이 사용되는 다른 예측 분석 방법과 비교하여 예측의 정확성을 측정하였다. 이를 통해 해양사고 발생에 관한 예측 체계를 마련하는데 하나의 확률 모형을 제안하였으며, 나아가 다양한 해양사고의 문제를 예측하는데 기여할 것으로 기대된다.

  • PDF

Two-Dimensional Model of Hidden Markov Mesh

  • 신봉기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.772-779
    • /
    • 2006
  • The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.

  • PDF

ANALYZING THE DURATION OF SUCCESS AND FAILURE IN MARKOV-MODULATED BERNOULLI PROCESSES

  • Yoora Kim
    • 대한수학회지
    • /
    • 제61권4호
    • /
    • pp.693-711
    • /
    • 2024
  • A Markov-modulated Bernoulli process is a generalization of a Bernoulli process in which the success probability evolves over time according to a Markov chain. It has been widely applied in various disciplines for modeling and analysis of systems in random environments. This paper focuses on providing analytical characterizations of the Markovmodulated Bernoulli process by introducing key metrics, including success period, failure period, and cycle. We derive expressions for the distributions and the moments of these metrics in terms of the model parameters.

Bayesian Analysis of Binary Non-homogeneous Markov Chain with Two Different Time Dependent Structures

  • Sung, Min-Je
    • Management Science and Financial Engineering
    • /
    • 제12권2호
    • /
    • pp.19-35
    • /
    • 2006
  • We use the hierarchical Bayesian approach to describe the transition probabilities of a binary nonhomogeneous Markov chain. The Markov chain is used for describing the transition behavior of emotionally disturbed children in a treatment program. The effects of covariates on transition probabilities are assessed using a logit link function. To describe the time evolution of transition probabilities, we consider two modeling strategies. The first strategy is based on the concept of exchangeabiligy, whereas the second one is based on a first order Markov property. The deviance information criterion (DIC) measure is used to compare models with two different time dependent structures. The inferences are made using the Markov chain Monte Carlo technique. The developed methodology is applied to some real data.

Novel Approach for Modeling Wireless Fading Channels Using a Finite State Markov Chain

  • Salam, Ahmed Abdul;Sheriff, Ray;Al-Araji, Saleh;Mezher, Kahtan;Nasir, Qassim
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.718-728
    • /
    • 2017
  • Empirical modeling of wireless fading channels using common schemes such as autoregression and the finite state Markov chain (FSMC) is investigated. The conceptual background of both channel structures and the establishment of their mutual dependence in a confined manner are presented. The novel contribution lies in the proposal of a new approach for deriving the state transition probabilities borrowed from economic disciplines, which has not been studied so far with respect to the modeling of FSMC wireless fading channels. The proposed approach is based on equal portioning of the received signal-to-noise ratio, realized by using an alternative probability construction that was initially highlighted by Tauchen. The associated statistical procedure shows that a first-order FSMC with a limited number of channel states can satisfactorily approximate fading. The computational overheads of the proposed technique are analyzed and proven to be less demanding compared to the conventional FSMC approach based on the level crossing rate. Simulations confirm the analytical results and promising performance of the new channel model based on the Tauchen approach without extra complexity costs.