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ANALYZING THE DURATION OF SUCCESS AND FAILURE

IN MARKOV-MODULATED BERNOULLI PROCESSES

Yoora Kim

Abstract. A Markov-modulated Bernoulli process is a generalization of

a Bernoulli process in which the success probability evolves over time
according to a Markov chain. It has been widely applied in various disci-

plines for modeling and analysis of systems in random environments. This
paper focuses on providing analytical characterizations of the Markov-

modulated Bernoulli process by introducing key metrics, including success

period, failure period, and cycle. We derive expressions for the distribu-
tions and the moments of these metrics in terms of the model parameters.

1. Introduction

A Bernoulli process is a classical binary stochastic model that consists of a
sequence of independent trials, where each trial results in one of two possible
outcomes: 1 and 0, referred to as success and failure, respectively [19]. This
model is often used in reliability analysis as a mathematical tool to describe the
dynamics of a system that alternates between two dichotomous phases (e.g.,
working or disabling, conforming or non-conforming, acceptable or defective,
etc.). A key advantage of the Bernoulli process, in addition to its broad appli-
cability, is the simple characterization by a parameter p ∈ (0, 1), representing
the probability of obtaining a success in each trial. Notably, the parameter p
in the Bernoulli process is assumed to be fixed as a constant.

A Markov-modulated Bernoulli process (MMBP), introduced by Özekici [15],
generalizes the Bernoulli process by relaxing the assumption on the parame-
ter p. In the MMBP, there exists an underlying Markov chain that evolves in a
discrete-time setting. The state of this Markov chain at time n determines the
success probability p for the nth trial. Consequently, the parameter p in the
MMBP is not constrained to a constant but is allowed to vary over time. The
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Bernoulli process can be considered as a degenerate case of the MMBP in which
the underlying Markov chain always results in the same success probability p
regardless of its state. Furthermore, the MMBP can also be interpreted as a
Markov chain with state-dependent rewards [3, 15].

The MMBP has been employed for modeling and analysis in a wide range of
applications across multiple disciplines. They include, but are not limited to,
the following: reliability analysis for systems in random environments [2,17,18];
modeling of random yields in production systems [14,23]; and analysis of active
queue management algorithms in computer networks [1, 5, 13]. Recent studies
also include the following: modeling of bursty and correlated traffic in modern
telecommunication networks [10,22,24,25]; modeling of fading channels in wire-
less communications [4, 7, 8]; performance evaluation of scheduling algorithms
in wireless networks [11]; and modeling of a missing data mechanism in linear
systems [9]. These applications have a common feature in that the underlying
Markov chain of the MMBP describes a randomly changing environment in
which the considered system operates. Additionally, the success probability of
the Bernoulli process within the system is affected by the current state of this
environment.

Although the MMBP has found wide applications in various fields, its math-
ematical properties have received limited attention. Özekici [15] analyzed the
transient and long-term behavior of the number of successes and the success
times in the MMBP. Özekici and Soyer [16] focused on inferential issues in esti-
mating the model parameters of the MMBP and presented a Bayesian analysis
using Markov chain Monte Carlo methods. The main purpose of this paper is
to analyze the mathematical properties of the MMBP from a different view-
point by introducing new metrics. Our approach is based on the observation
that any sample path of the MMBP exhibits an alternating pattern between
state 1 and state 0, with random duration of sojourn times in each state. We
formulate these sojourn times as two sorts of random variables: success periods
and failure periods. Furthermore, to quantify the repetitive pattern observed
in the MMBP, we introduce an additional metric, called a cycle, which con-
sists of a success period followed by a failure period. In this paper, we analyze
the probabilistic characteristics of these metrics using the first-step analysis, a
well-established technique in Markov chain theory [12].

The motivation for this paper comes from the work by Kim [11], where the
access delay experienced by mobile devices in a wireless network with CDF-
based scheduling is analyzed using the MMBP. In this context, the access
delay corresponds to the success period of the MMBP, given that a success
occurs when a device is not selected by the scheduler. Furthermore, beyond
the work [11], the metrics introduced in this paper can be applied to various
scheduling algorithms in wireless networks where multiple users contend for
access to a shared wireless medium. Typically, each user in a wireless network
is subject to a randomly time-varying channel, which can be well described by
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a finite-state Markov chain [20]. This random environment affects the prob-
ability of a user being granted access to the channel, with the precise value
determined by the specific scheduling algorithm employed. Accordingly, the
MMBP can provide a framework for modeling the channel access process of a
user, where success and failure indicate whether the user is granted access or
not. Within this framework, a success period can represent transmission time
of a user, while a failure period can represent inter-transmission time, thus
impacting the throughput and latency experienced by the user. Moreover, a
cycle, i.e., the sum of a pair of transmission time and inter-transmission time,
can capture the duration between two consecutive transmissions by that user.
This metric is essential for evaluating short-term fairness of a scheduling algo-
rithm, as it can quantify the ability of the algorithm to grant access equitably
among multiple users within a finite time frame [21]. Therefore, understand-
ing the success period, failure period, and cycle of the MMBP can be useful
from the perspective of applications, particularly in the analysis of scheduling
algorithms in wireless networks.

The contributions of this paper are summarized as follows. (i) We introduce
a set of metrics specific to the MMBP. These metrics are simple, yet useful
in understanding and analyzing the behavior of the MMBP. (ii) We derive
formulas for the probability distributions and the moments for these metrics. In
our derivation, we express the model parameters of the MMBP using matrices
and present the formulas in a concise matrix notation. This can facilitate the
application, interpretation, and manipulation of the derived formulas.

The rest of this paper is organized as follows. In Section 2, we describe
the MMBP model and introduce a set of definitions. In Section 3, we present
preliminary lemmas. The main theorems for the distributions and the moments
of the introduced metrics are presented in Sections 4 and 5, respectively.

2. Model description and formulation

In this section, we describe the MMBP model proposed in [15] and introduce
a set of definitions that are specific to this model.

We consider a discrete-time system where the time axis is divided into slots
of equal length L. Without loss of generality, we set L = 1. Hence, the nth slot
corresponds to the time interval [n − 1, n) for n = 1, 2, 3, . . .. The system
operates in an environment that undergoes random fluctuations over time.
These fluctuations occur on a per-slot basis, meaning that the environment
remains in a constant state within each slot but can transition to a different
state between slots. Let M(n) be a random variable that represents the state
of the environment during the nth slot. We assume that {M(n), n ≥ 1} is
a discrete-time Markov chain on state-space {1, 2, . . . ,m} with the transition
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probability matrix given by

V =


v1,1 v1,2 · · · v1,m
v2,1 v2,2 · · · v2,m
...

...
. . .

...
vm,1 vm,2 · · · vm,m

 ,
where vj,k = P(M(n + 1) = k |M(n) = j) for j, k ∈ {1, 2, . . . ,m}. We further
assume that {M(n), n ≥ 1} is an ergodic Markov chain having the limiting
distribution π = [π1, π2, . . . , πm]. One can obtain the distribution π by solving
the following system of matrix equations:

πV = π, π1 = 1,

where 1 denotes the all-ones matrix of size m× 1.
At the beginning of each slot, a series of Bernoulli trials is conducted, where

each trial can result in either a success or a failure. Let B(n) be a random
variable that represents the outcome of the nth Bernoulli trial, i.e.,

B(n) =

{
1 if the nth trial is a success,

0 if the nth trial is a failure.

We refer to the nth slot as a success slot if B(n) = 1, and as a failure slot if
B(n) = 0. The probability of success or failure in each trial depends on the
state of the environment at the time of the trial. Specifically, if the environment
is in state j during the nth slot, then the nth Bernoulli trial results in a success
with probability pj or a failure with probability qj (= 1− pj), i.e.,

pj = P(B(n) = 1 |M(n) = j),

qj = P(B(n) = 0 |M(n) = j).

Furthermore, given the environmental process M = {M(n), n ≥ 1}, the Bern-
oulli trials are conditionally independent, i.e.,

P(B(1) = i1, B(2) = i2, . . . , B(n) = in |M) =

n∏
k=1

P(B(k) = ik |M)(1)

for all n = 1, 2, 3, . . .. In this manner, the process {B(n), n ≥ 1} is modulated
by the Markov chain {M(n), n ≥ 1}. Consequently, {B(n), n ≥ 1} is referred
to as the MMBP, while {M(n), n ≥ 1} is referred to as its underlying Markov
chain.

For later use, we define diagonal matrices P and Q of size m×m as

P =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pm

 , Q =


q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...
0 0 · · · qm

 .
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We have P + Q = I, where I is the identity matrix of size m ×m. Hence, an
MMBP can be represented mathematically by the pair (V,P) or (V,Q).

Note that the MMBP in this paper is assumed to satisfy

0 < pj < 1 (or equivalently, 0 < qj < 1)(2)

for all j = 1, 2, . . . ,m. This aligns with the convention that the parameter p
of a Bernoulli process is in the interval (0, 1). Consequently, the MMBP with
representation of the form (V,P) = (V, pI) or (V,Q) = (V, qI) simplifies to a
conventional Bernoulli process with a parameter p ∈ (0, 1) or 1 − q ∈ (0, 1),
respectively.

A sample path of an MMBP always alternates between 0 and 1. In the
case where B(1) = 1, it exhibits a sequence of success slots followed by failure
slots. This pattern continues with another sequence of success slots followed
by failure slots, forming a cyclic pattern that repeats indefinitely. A similar
observation can be made in the case where B(1) = 0. In order to characterize
this pattern mathematically, we introduce the following definitions.

Definition 2.1. We define a success period and a failure period as a time inter-
val during which the MMBP remains in states 1 and 0, respectively. Specifically,
a success period begins when a success slot follows a failure slot (indicating a
transition of the MMBP from state 0 to state 1) and terminates when a failure
slot appears for the first time after the success slot (indicating a transition from
state 1 back to state 0). Similarly, a failure period begins with a transition of
the MMBP from state 1 to state 0 and ends with its return to state 1. Let
T s and T f be random variables denoting the length of a success and a failure
period in the steady state, respectively. More precisely, T s and T f count the
total number of slots comprising a success and a failure period in the steady
state, respectively. They can be used to measure the duration of time that the
MMBP persists in a specific state, once it enters that state.

Definition 2.2. We define a cycle as a pair consisting of a success period
followed by a failure period. Let T c be a random variable that represents the
length of a cycle in the steady state. Similar to Definition 2.1, T c counts the
total number of slots comprising a cycle in the steady state. It can be used
to measure the duration of time between the start of two successive success
periods.

Example 2.1. Figure 1 shows a sample path of the MMBP {B(n), n ≥ 1}
with the representation (V,P) given by

V =

[
0.8 0.2
0.4 0.6

]
, P =

[
0.7 0
0 0.6

]
.

In Figure 1, we can observe that the interval [3, 5) becomes the first success
period, followed by the failure period [5, 6). Hence, the interval [3, 6) forms
the first cycle. Similarly, the interval [6, 7) becomes the second success period,
followed by the failure period [7, 8), which form the second cycle [6, 8), and so
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Figure 1. A sample path of the MMBP in Example 2.1.

on. If T s(k), T f(k) and T c(k) denote the lengths of the kth success period,
failure period and cycle, respectively, then

(T s(k), T f(k), T c(k)) =


(2, 1, 3) k = 1,

(1, 1, 2) k = 2,

(4, 2, 6) k = 3,
...

The random variables T s, T f and T c can be expressed as

(T s, T f, T c) = lim
k→∞

(T s(k), T f(k), T c(k)).

The aim of the paper is to derive expressions for the probability distributions
and the moments of T s, T f and T c in terms of the pair (V,P) or (V,Q). The
resulting expressions will be presented in Sections 4 and 5 for the probability
distributions and the moments, respectively.

3. Preliminary results

In this section, we present preliminary lemmas that serve as the basis for
the analysis in Sections 4 and 5. We begin by defining a random vector

X(n) = (B(n),M(n)), n ≥ 1.

It represents the joint states of the Bernoulli process and the underlying Markov
chain at each slot, from which we can fully describe the evolution of the MMBP.
In Lemma 3.1, we show the characteristics of the process {X(n), n ≥ 1}.

Lemma 3.1. The process {X(n), n ≥ 1} is a two-dimensional Markov chain on
state-space S = {(i, j) | i = 0, 1, j = 1, 2, . . . ,m} with the transition probability
from state (i1, j1) ∈ S to state (i2, j2) ∈ S given by

P(X(n+ 1) = (i2, j2) |X(n) = (i1, j1)) =

{
vj1,j2pj2 if i2 = 1,

vj1,j2qj2 if i2 = 0.
(3)
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Proof. We have, for all (i1, j1), (i2, j2) ∈ S,

P(X(n+ 1) = (i2, j2) |X(n) = (i1, j1),X(n− 1), . . . ,X(1))

= P(B(n+1)= i2 |M(n+1)=j2,X(n) = (i1, j1),X(n− 1), . . . ,X(1))

· P(M(n+ 1) = j2 |X(n) = (i1, j1),X(n− 1), . . . ,X(1)).(4)

The first factor on the right-hand side of (4) reduces to

P(B(n+ 1) = i2 |M(n+ 1) = j2,X(n) = (i1, j1),X(n− 1), . . . ,X(1))

= P(B(n+ 1) = i2 |M(n+ 1) = j2)

=

{
pj2 if i2 = 1,

qj2 if i2 = 0,

where the first equality follows from (1), expressing the conditional indepen-
dence of Bernoulli trials given the underlying Markov chain. Meanwhile, the
second factor on the right-hand side of (4) reduces to

P(M(n+ 1) = j2 |X(n) = (i1, j1),X(n− 1), . . . ,X(1))

= P(M(n+ 1) = j2 |M(n) = j1)

= vj1,j2 ,

where the first equality follows from the Markov property of {M(n), n ≥ 1}.
Hence, we have

P(X(n+ 1) = (i2, j2) |X(n) = (i1, j1),X(n− 1), . . . ,X(1))

= P(X(n+ 1) = (i2, j2) |X(n) = (i1, j1))

=

{
vj1,j2pj2 if i2 = 1,

vj1,j2qj2 if i2 = 0.

This completes the proof. □

Based on Lemma 3.1, we can classify each success period according to the
state of the underlying Markov chain of the MMBP. Specifically, we examine
the initial slot of each success period and observe the state of the underlying
Markov chain during that slot. If the observed state is j ∈ {1, 2, . . . ,m}, we
classify the success period as a j-success period. Similarly, a failure period
is classified as a j-failure period if the underlying Markov chain is in state j
during the initial slot of the failure period. Let T s

j and T f
j be random variables

representing the length of a j-success and a j-failure period, respectively. Then,
we can express T s and T f in terms of T s

j and T f
j as follows:

T s = T s
j with probability αj , (j = 1, . . . ,m),(5)

T f = T f
j with probability βj , (j = 1, . . . ,m).(6)

Here, αj represents the steady-state probability that the underlying Markov
chain of the MMBP is in state j over the initial slot of a success period,
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and βj represents the corresponding probability for a failure period. Note
that

∑m
j=1 αj =

∑m
j=1 βj = 1. For later use, we define matrices α and β of

size 1×m as

α =
[
α1 α2 · · · αm

]
,(7)

β =
[
β1 β2 · · · βm

]
.(8)

Expanding on the previous argument, we classify a cycle as a j-cycle if the
underlying Markov chain is in state j ∈ {1, 2, . . . ,m} during the initial slot of
the cycle. Let T c

j be a random variable that represents the length of a j-cycle.
According to Definition 2.2, there is a one-to-one correspondence between a
cycle and a success period. Furthermore, the starting time of a cycle coincides
with that of the corresponding success period. As a result, the probability that
the underlying Markov chain of the MMBP is in state j over the initial slot of
a cycle, is equal to αj . Therefore, we can express T c in terms of T c

j as follows:

T c = T c
j with probability αj , (j = 1, . . . ,m).(9)

Based on (5), (6) and (9), we proceed with the analysis through two stages.
In the first stage, we focus on the random variables T s

j , T
f
j and T

c
j , and examine

their probabilistic properties using the first-step analysis [12] for the Markov
chain {X(n), n ≥ 1} of Lemma 3.1. In the second stage, we find the expressions
for the probabilities αj and βj . Lemma 3.2 presents the detailed results of our
analysis in the first stage.

Lemma 3.2. For 1 ≤ j ≤ m, the length of a j-success period is expressed as

T s
j

d
=

{
1 with probability

∑m
k=1 vj,kqk,

1 + T s
k with probability vj,kpk, (k = 1, . . . ,m),

(10)

where
d
= denotes “equal in distribution.” Similarly, the length of a j-failure

period is expressed as

T f
j

d
=

{
1 with probability

∑m
k=1 vj,kpk,

1 + T f
k with probability vj,kqk, (k = 1, . . . ,m).

(11)

Finally, the length of a j-cycle is expressed as

T c
j

d
=

{
1 + T f

k with probability vj,kqk,

1 + T c
k with probability vj,kpk,

(k = 1, . . . ,m).(12)

Proof. For 1 ≤ j ≤ m, let Isj denote a j-success period in the steady state.
According to Definition 2.1, the period Isj consists of T s

j (≥ 1) success slot(s),
and we index its initial slot by n̂. Following the first-step analysis, we observe
the Markov chain {X(n), n ≥ 1} at the (n̂+1)st slot. Suppose that the observed
state is X(n̂+1) = (i, k) for (i, k) ∈ S. Then, there are 2m possible outcomes,
and we group them into two cases: (i) i = 0 and (ii) i = 1.



ANALYSIS OF MARKOV-MODULATED BERNOULLI PROCESSES 701

(i) If i = 0, the (n̂ + 1)st slot is recognized as a failure slot, causing Isj to
terminate at the end of the n̂th slot regardless of the state k. Hence, we have
for all 1 ≤ k ≤ m:

T s
j = 1.(13)

By (3) in Lemma 3.1, the probability of this event is

m∑
k=1

P(X(n̂+ 1) = (0, k) |X(n̂) = (1, j)) =

m∑
k=1

vj,kqk.(14)

(ii) If i = 1, the (n̂ + 1)st slot is recognized as a success slot, causing Isj to
continue beyond the n̂th slot. We note that, starting from the (n̂ + 1)st slot,
Isj behaves as if it were a newly generated success period due to the Markov
property of {X(n), n ≥ 1}. In particular, the behavior of Isj from the (n̂+ 1)st
slot onward is stochastically identical to that of a k-success period, as the
underlying Markov chain of the MMBP is in state k during the (n̂+ 1)st slot.
Hence, we have

T s
j

d
= 1 + T s

k, 1 ≤ k ≤ m.(15)

By (3) in Lemma 3.1, the probability of this event is

P(X(n̂+ 1) = (1, k) |X(n̂) = (1, j)) = vj,kpk, 1 ≤ k ≤ m.(16)

Combining (13)–(16), we obtain (10).
By a similar argument as in the derivation of (10), we can prove (11). Due

to similarities, we omit the details.
Now, we denote a j-cycle in the steady state by Icj . By Definition 2.2, the

cycle Icj consists of T c
j (≥ 2) slots. Without loss of generality, we can reuse n̂

to index the initial slot of Icj , since the cycle Icj starts whenever the period Isj
starts. Following the first-step analysis again, we suppose X(n̂+1) = (i, k) for
(i, k) ∈ S. As before, we consider two cases: (i) i = 0 and (ii) i = 1.

(i) If i = 0, the (n̂ + 1)st slot is recognized as a failure slot, causing the j-
success period that comprises Icj to terminate at the end of the n̂th slot. Then,
the k-failure period follows from the (n̂+ 1)st slot. When this k-failure period
terminates, the cycle Icj also terminates. Hence, we have

T c
j

d
= 1 + T f

k, 1 ≤ k ≤ m.(17)

By (3) in Lemma 3.1, the probability of this event is

P(X(n̂+ 1) = (0, k) |X(n̂) = (1, j)) = vj,kqk, 1 ≤ k ≤ m.(18)

(ii) If i = 1, the (n̂ + 1)st slot is recognized as a success slot. Since a cycle
always starts with a success period, the behavior of Icj from the (n̂+ 1)st slot
onward is stochastically identical to that of a k-cycle. Hence, we have

T c
j

d
= 1 + T c

k , 1 ≤ k ≤ m.(19)
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The probability of this event is given by (16). Combining (16)–(19) leads
to (12). This completes the proof. □

We now proceed to the second stage, where we derive expressions for the
probabilities αj and βj for 1 ≤ j ≤ m. The result is presented in Lemma 3.3.

Lemma 3.3. The matrices α in (7) and β in (8) are obtained by

α =
πQVP
πQVP1

, β =
πPVQ
πPVQ1

.

Proof. The proof of Lemma 3.3 follows a similar approach to the one used in the
derivation of [11, (15)] (see the second bulleted part of [11, Section IV]). A key
difference is that the approach in [11] involves an approximation for specific
forms of V and P, which are determined by the given application scenario.
However, Lemma 3.3 considers general forms of V and P without approximation
and is not limited to a specific application. Due to similarities, we omit the
detailed proof. □

In Lemma 3.4, we establish the invertibility of the matrices I − VP and
I− VQ, which will be used in the proofs of Theorems 4.2, 5.1 and 5.2.

Lemma 3.4. The matrices I−VP and I−VQ are invertible, with their inverses
given by (I−VP)−1 =

∑∞
n=0(VP)n and (I−VQ)−1 =

∑∞
n=0(VQ)n, respectively.

Proof. We first demonstrate that the matrix VP is strictly sub-stochastic, i.e.,
it is non-negative and VP1 < 1. Clearly, VP is non-negative. Since P is a
diagonal matrix, the (i, j) entry of VP is given by (VP)i,j = vi,jpj . Hence, the
sum of the entries in the ith row of VP is bounded above by

m∑
j=1

(VP)i,j =
m∑
j=1

vi,jpj ≤ max
1≤j≤m

pj ·
m∑
j=1

vi,j <

m∑
j=1

vi,j = 1,(20)

where the second inequality follows from (2), and the last equality holds because
V is stochastic. Since (20) holds for all i = 1, 2, . . . ,m, we have VP1 < 1.

Next, we establish that ρ(VP) < 1, where ρ(VP) denotes the spectral radius
of VP. As VP is strictly sub-stochastic, the infinity norm of VP, defined as
∥VP∥∞ = max1≤i≤m

∑m
j=1 |(VP)i,j |, is bounded above by ∥VP∥∞ < 1. This

bound, combined with the well-known inequality ρ(VP) ≤ ∥VP∥∞, leads to
ρ(VP) ≤ ∥VP∥∞ < 1. Consequently, the inverse of I−VP exists and is expressed
as (I− VP)−1 =

∑∞
n=0(VP)n [6, Section 10.4, Facts 4(g)].

We can complete the proof of Lemma 3.4 by repeating the preceding argu-
ment but substituting Q and qj for P and pj , respectively. Due to similarities,
we omit the details. □

4. Distributions

In this section, we derive explicit expressions for the probability mass
functions (pmfs) and the complementary cumulative distribution functions
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(CCDFs) of the lengths of a success period, a failure period and a cycle. Let

f(l) = P(T s = l), l ≥ 1,

g(l) = P(T f = l), l ≥ 1,

h(l) = P(T c = l), l ≥ 2.

The following theorem gives the expressions for these pmfs.

Theorem 4.1. For the MMBP with representation (V,P), we have

f(l) = α(VP)l−1(VQ)1, l ≥ 1,

g(l) = β(VQ)l−1(VP)1, l ≥ 1,

h(l) = α

l−2∑
s=0

(VP)s(VQ)l−1−s(VP)1, l ≥ 2,

where α and β are given in Lemma 3.3.

Proof. We first derive the pmf f(l) of the length of a success period. Towards
this end, we define a matrix f(l) of size m × 1 whose jth element is the pmf
fj(l) = P(T s

j = l) of the length of a j-success period as follows:

f(l) =


f1(l)
f2(l)
...

fm(l)

 =


P(T s

1 = l)
P(T s

2 = l)
...

P(T s
m = l)

 .
We first consider the case l = 1. Since each of the random variables T s

1 , T
s
2 , . . .,

T s
m can take on positive integer values, (10) in Lemma 3.2 yields

fj(1) =

m∑
k=1

vj,kqk.(21)

Note that (21) holds for all 1 ≤ j ≤ m. Hence, we can write (21) in matrix
form as

f(1) = VQ1.(22)

Next, we consider the case l ≥ 2. By (10) in Lemma 3.2 again, we have

fj(l) =

m∑
k=1

vj,kpkfk(l − 1).(23)

Note that (23) also holds for all 1 ≤ j ≤ m. Hence, we can write (23) in matrix
form as

f(l) = VPf(l − 1), l ≥ 2.(24)

Combining (22) and (24), we have

f(l) = (VP)l−1(VQ)1, l ≥ 1.
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Using the law of total probability with (5), we can therefore obtain the pmf of
the length of a success period as

f(l) =

m∑
j=1

αjfj(l) = αf(l) = α(VP)l−1(VQ)1, l ≥ 1.

In a similar manner, we next derive the pmf g(l) of the length of a failure
period. We define a matrix g(l) of size m × 1 whose jth element is the pmf
gj(l) = P(T f

j = l) of the length of a j-failure period as follows:

g(l) =


g1(l)
g2(l)
...

gm(l)

 =


P(T f

1 = l)
P(T f

2 = l)
...

P(T f
m = l)

 .
Taking a similar approach as above, we can obtain

g(l) =

{
VP1 if l = 1,

VQg(l − 1) if l ≥ 2.

Due to similarities, we omit the details. It then follows that

g(l) = (VQ)l−1(VP)1, l ≥ 1.(25)

Using the law of total probability with (6), we can obtain the pmf of the length
of a failure period as

g(l) =

m∑
j=1

βjgj(l) = βg(l) = β(VQ)l−1(VP)1, l ≥ 1.

Finally, we derive the pmf h(l) of the length of a cycle. Unlike the pmfs f(l)
and g(l), for the pmf h(l), we consider l ≥ 2 since a cycle consists of at least
two slots. For each of l ≥ 2, we define a matrix h(l) of size m × 1 whose jth
element is the pmf hj(l) = P(T c

j = l) of the length of a j-cycle as follows:

h(l) =


h1(l)
h2(l)
...

hm(l)

 =


P(T c

1 = l)
P(T c

2 = l)
...

P(T c
m = l)

 .
From (12) in Lemma 3.2, we have

hj(l) =

m∑
k=1

vj,kqkgk(l − 1) +

m∑
k=1

vj,kpkhk(l − 1).(26)

Note that, since l ≥ 2 is considered, the first term on the right-hand side of
(26) reduces to

m∑
k=1

vj,kqkgk(l − 1) = gj(l),
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where we used (11) in Lemma 3.2 (similarly to the one in (23)). Hence, we can
rewrite (26) as

hj(l) = gj(l) +

m∑
k=1

vj,kpkhk(l − 1).

Since the above relation holds for all 1 ≤ j ≤ m, it gives rise to the matrix
expression

h(l) = g(l) + VPh(l − 1) = (VQ)l−1(VP)1+ VPh(l − 1),

where the second equality comes from (25). By repeating the procedure, we
then have

h(l) =

l−2∑
s=0

(VP)s(VQ)l−1−s(VP)1, l ≥ 2.

Using the law of total probability with (9), we can therefore obtain the pmf of
the length of a cycle as

h(l) =

m∑
j=1

αjhj(l) = αh(l) = α

l−2∑
s=0

(VP)s(VQ)l−1−s(VP)1, l ≥ 2.

This completes the proof. □

Now we derive the CCDFs of the lengths of a success period, a failure period
and a cycle by using the corresponding pmfs obtained in Theorem 4.1. Let

F (l) = P(T s > l), l ≥ 0,

G(l) = P(T f > l), l ≥ 0,

H(l) = P(T c > l), l ≥ 1.

The following theorem gives the expressions for these CCDFs.

Theorem 4.2. For the MMBP with representation (V,P), we have

F (l) = α(VP)l1, l ≥ 0,

G(l) = β(VQ)l1, l ≥ 0,

H(l) = α

l∑
s=0

(VP)s(VQ)l−s1, l ≥ 1,

where α and β are given in Lemma 3.3.

Proof. We first derive the CCDF F (l) of the length of a success period using
the pmf f(·) in Theorem 4.1 as follows:

F (l) =

∞∑
i=l+1

f(i) = α

∞∑
i=l+1

(VP)i−1(VQ)1.(27)
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Since Q = I− P, we can rewrite the factor (VQ)1 as

(VQ)1 = V(I− P)1 = V1− VP1 = 1− VP1 = (I− VP)1,(28)

where the third equality follows as V is a stochastic matrix with each row
summing to 1. Substituting (28) into (27) and applying Lemma 3.4 gives

F (l) = α

∞∑
i=l+1

(VP)i−1(I− VP)1 = α(VP)l1, l ≥ 0.

In a similar manner, we next derive the CCDF G(l) of the length of a failure
period using the pmf g(·) in Theorem 4.1 as follows:

G(l) =

∞∑
i=l+1

g(i) = β

∞∑
i=l+1

(VQ)i−1(VP)1 = β(VQ)l1, l ≥ 0.

Due to similarities, we omit the details.
Finally, we derive the CCDF H(l) of the length of a cycle using the pmf

h(·) in Theorem 4.1. By the same reason as used in the derivation of h(·), we
consider l ≥ 1 for H(l) unlike F (l) and G(l). For l ≥ 1, we have

H(l) =

∞∑
i=l+1

h(i) = α

∞∑
i=l+1

i−2∑
s=0

(VP)s(VQ)i−1−s(I− VQ)1,

where the last equality follows from (28). Since the summand in the expression
of H(l) is non-negative, we can change the order of summation to obtain the
following:

H(l) = α

l−1∑
s=0

∞∑
i=l+1

(VP)s(VQ)i−1−s(I− VQ)1

+α

∞∑
s=l

∞∑
i=s+2

(VP)s(VQ)i−1−s(I− VQ)1.(29)

Based on Lemma 3.4, we can simplify the first term on the right-hand side
of (29) as

l−1∑
s=0

∞∑
i=l+1

(VP)s(VQ)i−1−s(I− VQ)1 =

l−1∑
s=0

(VP)s(VQ)l−s1,(30)

while simplifying the second term as
∞∑
s=l

∞∑
i=s+2

(VP)s(VQ)i−1−s(I− VQ)1 =

∞∑
s=l

(VP)s(VQ)1 = (VP)l1.(31)

Substituting (30) and (31) into (29) gives

H(l) = α

l−1∑
s=0

(VP)s(VQ)l−s1+α(VP)l1 = α

l∑
s=0

(VP)s(VQ)l−s1, l ≥ 1.
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This completes the proof. □

5. Moments

In this section, we derive recursive expressions for the nth moments of the
lengths of a success period, a failure period and a cycle. Let

µn = E[(T s)n], n ≥ 1,

ηn = E[(T f)n], n ≥ 1,

ψn = E[(T c)n], n ≥ 1.

Similarly to the derivation of Theorem 4.1, we introduce matrices µn, ηn and
ψn, each of size m×1. The jth element of these matrices, denoted by µj,n, ηj,n
and ψj,n, respectively, is defined as the nth moment of the length of a j-success
period, a j-failure period and a j-cycle, respectively, as specified below:

µn =


µ1,n

µ2,n

...
µm,n

 =


E[(T s

1)
n]

E[(T s
2)

n]
...

E[(T s
m)n]

 , n ≥ 1,

ηn =


η1,n
η2,n
...

ηm,n

 =


E[(T f

1)
n]

E[(T f
2)

n]
...

E[(T f
m)n]

 , n ≥ 1,

ψn =


ψ1,n

ψ2,n

...
ψm,n

 =


E[(T c

1 )
n]

E[(T c
2 )

n]
...

E[(T c
m)n]

 , n ≥ 1.

Then, we can obtain the following by applying the law of total probability
with (5), (6) and (9) for µn, ηn and ψn, respectively:

µn =

m∑
j=1

αjµj,n = αµn,

ηn =

m∑
j=1

βjηj,n = βηn,

ψn =

m∑
j=1

αjψj,n = αψn,

where α and β are given in Lemma 3.3.
In the rest of this section, we derive expressions for the matrices µn, ηn

and ψn, considering the cases n = 1 and n ≥ 2 sequentially. Theorem 5.1
addresses the case where n = 1.
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Theorem 5.1. For the MMBP with representation (V,P), we have

µ1 = (I− VP)−11,(32)

η1 = (I− VQ)−11,(33)

ψ1 = (I− VP)−1(I− VQ)−11.(34)

Proof. We take expectations on both sides of (10) in Lemma 3.2 to obtain the
expression for µ1:

µj,1 = 1 +

m∑
k=1

vj,kpkµk,1.(35)

Since (35) holds for all 1 ≤ j ≤ m, we can write it in matrix form as

µ1 = 1+ VPµ1.

By applying Lemma 3.4, we obtain (32).
Similarly, we can derive (33) from (11) in Lemma 3.2. Due to similarities,

we omit the details.
Finally, we derive the expression for ψ1 by taking expectations on both sides

of (12) in Lemma 3.2. Then, we obtain

ψj,1 = 1 +

m∑
k=1

vj,kqkηk,1 +

m∑
k=1

vj,kpkψk,1 = ηj,1 +

m∑
k=1

vj,kpkψk,1,(36)

where, in the second equality, we used the identity

ηj,1 = 1 +

m∑
k=1

vj,kqkηk,1,

which can be obtained from (11) in Lemma 3.2 using a similar argument as in
the derivation of (35). Furthermore, (36) holds for all 1 ≤ j ≤ m, leading to
the matrix expression

ψ1 = η1 + VPψ1.

Applying Lemma 3.4 again, we obtain

ψ1 = (I− VP)−1η1 = (I− VP)−1(I− VQ)−11,

where the second equality follows from (33). This shows (34), completing the
proof of Theorem 5.1. □

Now, we derive recursive expressions for the matrices µn, ηn and ψn for the
case where n ≥ 2. Theorem 5.2 presents the result.

Theorem 5.2. For the MMBP with representation (V,P), we have

µn = (I− VP)−1

{
1+ VP

n−1∑
s=1

(
n

s

)
µs

}
, n ≥ 2,(37)
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ηn = (I− VQ)−1

{
1+ VQ

n−1∑
s=1

(
n

s

)
ηs

}
, n ≥ 2,(38)

ψn = (I− VP)−1

{
ηn + VP

n−1∑
s=1

(
n

s

)
ψs

}
, n ≥ 2.(39)

Consequently, for a fixed n ≥ 2, the matrices µn, ηn and ψn can be obtained
recursively using the initial terms µ1, η1 and ψ1 presented in Theorem 5.1.

Proof. Let n ≥ 2. We first derive the expression for µn. By raising both sides
of (10) to the power of n and taking expectations on them, we have

µj,n =

m∑
k=1

vj,kqk +

m∑
k=1

vj,kpk

{
1 +

n∑
s=1

(
n

s

)
µk,s

}

= 1 +

m∑
k=1

vj,kpk

{
n∑

s=1

(
n

s

)
µk,s

}
.(40)

Since (40) holds for all 1 ≤ j ≤ m, we can write it using matrices as

µn = 1+ VP

{
n∑

s=1

(
n

s

)
µs

}
= 1+ VP

{
n−1∑
s=1

(
n

s

)
µs

}
+ VPµn.

Leveraging the invertibility of the matrix I−VP established in Lemma 3.4, we
can solve for µn, yielding (37).

Similarly, we can derive (38) from (11) in Lemma 3.2. Due to similarities,
we omit the details.

Finally, we derive the expression for ψn. As above, we raise both sides of
(12) to the power of n and take expectations on them. Then, we have

ψj,n =

m∑
k=1

vj,kqk

{
1 +

n∑
s=1

(
n

s

)
ηk,s

}
+

m∑
k=1

vj,kpk

{
1 +

n∑
s=1

(
n

s

)
ψk,s

}

= ηj,n +

m∑
k=1

vj,kpk

{
n∑

s=1

(
n

s

)
ψk,s

}
,(41)

where, in the second equality, we used the identity

ηj,n = 1 +

m∑
k=1

vj,kqk

{
n∑

s=1

(
n

s

)
ηk,s

}
,

which can be obtained from (11) in Lemma 3.2 using reasoning similar to the
derivation of (40). Since (41) holds for all 1 ≤ j ≤ m, we can write it using
matrices as

ψn = ηn + VP

{
n∑

s=1

(
n

s

)
ψs

}
= ηn + VP

{
n−1∑
s=1

(
n

s

)
ψs

}
+ VPψn.

Applying Lemma 3.4 again, we can obtain (39). This completes the proof. □
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