• 제목/요약/키워드: Markov chain Monte Carlo (MCMC)

검색결과 121건 처리시간 0.021초

Transition-$\omega$CDM 모형을 이용한 SN Ia 자료 분석

  • 박재홍
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • 암흑에너지는 우주상수만으로 여러 우주론 관측 자료들을 잘 설명하고 있지만, 최근 SN Ia 자료가 축적됨에 따라 암흑에너지의 상태방정식 파라미터 $\omega$가 우주상수에서와 같이 -1인 상수인지, 시간에 따라 변하는지를 알아내기 위한 연구가 진행되고 있다. 본 연구에서는 $\omega$가 시간에 따라 갑자기 변하는(sudden jump) transition-$\omega$CDM 모형을 이용하여 SN Ia 자료를 Markov Chain Monte Carlo(MCMC) 방법을 통해 분석했다. Transition-$\omega$CDM 모형에서는 상수인 $\omega$의 값이 임의의 적색이동에서 변한다고 가정하였다. 분석에 사용된 SN Ia 데이터는 307개의 Union 자료와 90개의 CfA3 SN Ia가 추가된 Constitution 자료이며 개별적으로 분석됐다. 그 결과 transition 시기 전후 $\omega$ 값들의 확률밀도분포를 얻어내었고, 이를 통해 SN Ia의 특성을 조사하였다.

  • PDF

The Exponentiated Weibull-Geometric Distribution: Properties and Estimations

  • Chung, Younshik;Kang, Yongbeen
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.147-160
    • /
    • 2014
  • In this paper, we introduce the exponentiated Weibull-geometric (EWG) distribution which generalizes two-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar et al. (1995). This proposed distribution is obtained by compounding the exponentiated Weibull with geometric distribution. We derive its cumulative distribution function (CDF), hazard function and the density of the order statistics and calculate expressions for its moments and the moments of the order statistics. The hazard function of the EWG distribution can be decreasing, increasing or bathtub-shaped among others. Also, we give expressions for the Renyi and Shannon entropies. The maximum likelihood estimation is obtained by using EM-algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). We can obtain the Bayesian estimation by using Gibbs sampler with Metropolis-Hastings algorithm. Also, we give application with real data set to show the flexibility of the EWG distribution. Finally, summary and discussion are mentioned.

Bayesian Nonstationary Flood Frequency Analysis Using Climate Information

  • Moon, Young-Il;Kwon, Hyun-Han
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1441-1444
    • /
    • 2007
  • It is now widely acknowledged that climate variability modifies the frequency spectrum of hydrological extreme events. Traditional hydrological frequency analysis methodologies are not devised to account for nonstationarity that arises due to variation in exogenous factors of the causal structure. We use Hierarchical Bayesian Analysis to consider the exogenous factors that can influence on the frequency of extreme floods. The sea surface temperatures, predicted GCM precipitation, climate indices and snow pack are considered as potential predictors of flood risk. The parameters of the model are estimated using a Markov Chain Monte Carlo (MCMC) algorithm. The predictors are compared in terms of the resulting posterior distributions of the parameters associated with estimated flood frequency distributions.

  • PDF

Robust Bayesian analysis for autoregressive models

  • Ryu, Hyunnam;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.487-493
    • /
    • 2015
  • Time series data sometimes show violation of normal assumptions. For cases where the assumption of normality is untenable, more exible models can be adopted to accommodate heavy tails. The exponential power distribution (EPD) is considered as possible candidate for errors of time series model that may show violation of normal assumption. Besides, the use of exible models for errors like EPD might be able to conduct the robust analysis. In this paper, we especially consider EPD as the exible distribution for errors of autoregressive models. Also, we represent this distribution as scale mixture of uniform and this form enables efficient Bayesian estimation via Markov chain Monte Carlo (MCMC) methods.

변동하중 하에서의 불확실성 기반 균열성장 예측 (Uncertainty based crack growth prediction under variable amplitude loads)

  • 임상혁;안다운;최주호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.349-352
    • /
    • 2011
  • 본 논문에서는 변동하중 하에서의 균열 성장 예측을 위하여 손상 모델과 주어진 데이터에 기반하여 균열 성장 모델의 변수를 확률분포로 추정한다. 이를 위해 베이지안 접근법을 활용하여 불확실 변수 결합 확률 분포식을 구축하고, Markov Chain Monte Carlo(MCMC)을 통해서 균열 성장 모델의 변수 샘플을 추출하였다. 여기서 추출된 샘플들을 균열 성장 모델에 적용, 균열 성장의 결과를 확률적인 분포로 예측하였다. 위와 같은 추정은 재료의 물성과 같은 변동성이 있는 변수를 모델에 적용하여, 결과값을 확률적인 분포로 예측하였다. 이것은 기존의 안전계수 개념보다 더욱 적절한 안전 기준을 제시 할 수 있다.

  • PDF

기상정보를 고려한 수문빈도해석 개념 및 절차 (Concept and Procedure of Hydrologic Frequency Analysis with Climate Information)

  • 문영일;권현한
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.727-730
    • /
    • 2008
  • 최근 연구에 의하면 기상 등의 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있다. 그러나 전통적인 수문학적 빈도해석은 자료의 정상성을 전제로 하기 때문에 어떤 외부인자의 따른 영향을 고려할 수 없다. 본 연구에서는 비정상성 빈도해석 모형의 기본 개념 및 절차에 대해서 살펴보았고 이를 국내 자료에 대해서 적용 검토하였다. 본 연구에서는 계층적 Bayesian 방법을 이용하여 한국에서 극치사상의 영향을 미치는 다양한 영향 인자를 평가하였다. 해수면온도, 예측 GCM 강수량 및 기상인자를 잠재적인 영향인자로 고려하였다. 수문위험도 분석에 관련된 매개변수는 Markov Chain Monte Carlo (MCMC) 방법을 이용하였다. 각 예측 인자의 적합성 및 중요성은 각 예측인자와 관련된 매개변수의 사후분포를 이용하여 검토 평가하였다.

  • PDF

Parameter estimation of an extended inverse power Lomax distribution with Type I right censored data

  • Hassan, Amal S.;Nassr, Said G.
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.99-118
    • /
    • 2021
  • In this paper, we introduce an extended form of the inverse power Lomax model via Marshall-Olkin approach. We call it the Marshall-Olkin inverse power Lomax (MOIPL) distribution. The four- parameter MOIPL distribution is very flexible which contains some former and new models. Vital properties of the MOIPL distribution are affirmed. Maximum likelihood estimators and approximate confidence intervals are considered under Type I censored samples. Maximum likelihood estimates are evaluated according to simulation study. Bayesian estimators as well as Bayesian credible intervals under symmetric loss function are obtained via Markov chain Monte Carlo (MCMC) approach. Finally, the flexibility of the new model is analyzed by means of two real data sets. It is found that the MOIPL model provides closer fits than some other models based on the selected criteria.

Copula-based common cause failure models with Bayesian inferences

  • Jin, Kyungho;Son, Kibeom;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.357-367
    • /
    • 2021
  • In general, common cause failures (CCFs) have been modeled with the assumption that components within the same group are symmetric. This assumption reduces the number of parameters required for the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model. Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copulabased CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between the components is constructed using copulas, the proposed model is able to provide the probability of common cause basic events (CCBEs) by formulating a system of equations without symmetry assumptions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the posterior distribution. Three example cases using simulated data, including asymmetry conditions in total failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limitations and notes on the proposed method.

Adaptive MCMC-Based Particle Filter for Real-Time Multi-Face Tracking on Mobile Platforms

  • Na, In Seop;Le, Ha;Kim, Soo Hyung
    • International Journal of Contents
    • /
    • 제10권3호
    • /
    • pp.17-25
    • /
    • 2014
  • In this paper, we describe an adaptive Markov chain Monte Carlo-based particle filter that effectively addresses real-time multi-face tracking on mobile platforms. Because traditional approaches based on a particle filter require an enormous number of particles, the processing time is high. This is a serious issue, especially on low performance devices such as mobile phones. To resolve this problem, we developed a tracker that includes a more sophisticated likelihood model to reduce the number of particles and maintain the identity of the tracked faces. In our proposed tracker, the number of particles is adjusted during the sampling process using an adaptive sampling scheme. The adaptive sampling scheme is designed based on the average acceptance ratio of sampled particles of each face. Moreover, a likelihood model based on color information is combined with corner features to improve the accuracy of the sample measurement. The proposed tracker applied on various videos confirmed a significant decrease in processing time compared to traditional approaches.

Event date model: a robust Bayesian tool for chronology building

  • Philippe, Lanos;Anne, Philippe
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.131-157
    • /
    • 2018
  • We propose a robust event date model to estimate the date of a target event by a combination of individual dates obtained from archaeological artifacts assumed to be contemporaneous. These dates are affected by errors of different types: laboratory and calibration curve errors, irreducible errors related to contaminations, and taphonomic disturbances, hence the possible presence of outliers. Modeling based on a hierarchical Bayesian statistical approach provides a simple way to automatically penalize outlying data without having to remove them from the dataset. Prior information on individual irreducible errors is introduced using a uniform shrinkage density with minimal assumptions about Bayesian parameters. We show that the event date model is more robust than models implemented in BCal or OxCal, although it generally yields less precise credibility intervals. The model is extended in the case of stratigraphic sequences that involve several events with temporal order constraints (relative dating), or with duration, hiatus constraints. Calculations are based on Markov chain Monte Carlo (MCMC) numerical techniques and can be performed using ChronoModel software which is freeware, open source and cross-platform. Features of the software are presented in Vibet et al. (ChronoModel v1.5 user's manual, 2016). We finally compare our prior on event dates implemented in the ChronoModel with the prior in BCal and OxCal which involves supplementary parameters defined as boundaries to phases or sequences.