Acknowledgement
This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KOFONS), using the financial resource granted by the Nuclear Safety and Security Commission(NSSC) of the Republic of Korea (No. 1705001).
References
- A. Mosleh, D. Rasmuson, F. Marshall, Guidelines on modeling common-cause failures in probabilistic risk assessment, Idaho Natl. Eng. Environ. Lab. (1999).
- IAEA, Procedures for Conducting Common Cause Failure Analysis in Probabilistic Safety Assessment: IAEA TECDOC Series No, vol. 648, 1992.
- D. Il Kang, M.J. Hwang, S.H. Han, J.E. Yang, Approximate formulas for treating asymmetrical common cause failure events, Nucl. Eng. Des. 239 (2009) 346-352, https://doi.org/10.1016/j.nucengdes.2008.10.004.
- D.L. Kelly, D.M. Rasmuson, Common-cause failure analysis in event assessment, in: Proc. Inst. Mech. Eng. Part O J. Risk Reliab., 2008, pp. 521-532, https://doi.org/10.1243/1748006XJRR121.
- A. O'Connor, A. Mosleh, A general cause based methodology for analysis of common cause and dependent failures in system risk and reliability assessments, Reliab. Eng. Syst. Saf. 145 (2016) 341-350, https://doi.org/10.1016/j.ress.2015.06.007.
- A. Shemyakin, A. Kniazev, Introduction to Bayesian Estimation and Copula Models of Dependence, 2017, https://doi.org/10.1002/9781118959046.
- C. Czado, Analyzing Dependent Data with Vine Copulas, Springer International Publishing, Cham, 2019, https://doi.org/10.1007/978-3-030-13785-4.
- R.B. Nelsen, An Introduction to Copulas, 2006, https://doi.org/10.1007/0-387-28678-0.
- D.L. Kelly, Using copulas to model dependence in simulation risk assessment, ASME Int. Mech. Eng. Congr. Expo. Proc. 14 (2008) 81-89, https://doi.org/10.1115/IMECE2007-41284.
- X. Jia, L. Wang, C. Wei, Reliability research of dependent failure systems using copula, Commun. Stat. Simulat. Comput. 43 (2014) 1838-1851, https://doi.org/10.1080/03610918.2013.800879.
- H.H. Kwon, A copula-based nonstationary frequency analysis for the 2012e2015 drought in California, Water Resour. Res. 52 (2016) 1-20, https://doi.org/10.1002/2014WR015716.
- J.-Y. Kim, J.-G. Kim, Y.-H. Cho, H.-H. Kwon, A development of Bayesian Copula model for a bivariate drought frequency analysis, J. Korea Water Resour. Assoc. 50 (2017) 745-758, https://doi.org/10.3741/JKWRA.2017.50.11.745.
- R.D.S. Silva, H.F. Lopes, Copula, marginal distributions and model selection: a Bayesian note, Stat. Comput. 18 (2008) 313-320, https://doi.org/10.1007/s11222-008-9058-y.
- E.F. Saraiva, A.K. Suzuki, L.A. Milan, Bayesian computational methods for sampling from the posterior distribution of a bivariate survival model, based on AMH copula in the presence of right-censored data, Entropy 20 (2018) 1-21, https://doi.org/10.3390/e20090642.
- M.F. Pellissetti, U. Klapp, Integration of Correlation Models for Seismic Failures into Fault Tree Based Seismic Psa, 2011, pp. 6-11.
- W.S. Jung, K. Hwang, S.K. Park, A new method to allocate combination probabilities of correlated seismic failures into CCF probabilities, in: PSA 2019 - Int. Top. Meet. Probabilistic Saf. Assess. Anal., 2019, pp. 369-373.
- U.S.NRC, Industry-average performance for components and initiating events at U.S. Commercial, Nuclear Power Plants (2007).
- S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. PAMI- 6 (1984) 721-741, https://doi.org/10.1109/TPAMI.1984.4767596.
- W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970) 97-109, https://doi.org/10.2307/2334940.
- G.O. Roberts, A. Gelman, W.R. Gilks, Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab. 7 (1997) 110-120. https://doi.org/10.1214/aoap/1034625254
- D. Huard, G. Evin, A.C. Favre, Bayesian copula selection, Comput. Stat. Data Anal. 51 (2006) 809-822, https://doi.org/10.1016/j.csda.2005.08.010.
- K. Jin, G. Heo, Copula study for common cause failures under asymmetric conditions, in: Trans. Korean Nucl. Soc. Spring Meet. Jeju, Korea, 2019. May 23-24.