• Title/Summary/Keyword: Markov Modeling

Search Result 272, Processing Time 0.025 seconds

Hardware and Software Dependability Analysis of Embedded AVTMR(All Voting Triple Modular Redundancy) System (내장형 AVTMR 시스템의 하드웨어 및 소프트웨어 신뢰성 분석)

  • Kim, Hyun-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.744-750
    • /
    • 2009
  • In this paper, the unified Markov modeling of hardware and software for AVTMR(AlI Voting Triple Modular Redundancy) system is proposed and the dependability is analyzed. In hardware case, a failure rate is fixed to no time varying parameter. But, in software case, failure rate is applied with time varying parameter. Especially, the dependability(Reliability, Availability, Maintainability, Safety) of software is analyzed with G-O/NHPP for Markov modeling. The dependability of single and AVTMR system is analyzed and simulated with a unified Markov modeling method, and the characteristic of each system is compared accroding to failure rate. This kind of fault tolerat system can be applied to an airplane and life critical system to meet the requirement for a specific requirement.

Korean Phoneme Recognition Using duration-dependent 3-State Hidden Markov Model (음소길이를 고려한 3-State Hidden Markov Model 에 의한 한국어 음소인식)

  • Yoo, H.-C.;Lee, H.-J.;Park, B.-C.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 1989
  • This paper discribes the method associated with modeling of Korean phonemes. Hidden Markov models(HMM's) may be viewed as an effective technique for modeling the inherent nonstationarity of speech signal. We propose a 3-state phoneme model to represent the sequentially changing characteristics of phonemes, i.e., transition-to-stationary-to-transition. Also we clarify that the duration of a phoneme is an important factor to have an effect in recognition accuracy and show that improvement in recognition rate can be obtained by using duration-dependent 3-state hidden Markov models.

  • PDF

Multiple State Hidden Markov Model to Predict Transmembrane Protein Topology

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.1019-1031
    • /
    • 2004
  • This paper describes a new modeling method for the prediction of transmembrane protein topology. The structural regions of the transmembrane protein have been modeled by means of a multiple state hidden Markov model that has provided for the detailed modeling of the heterogeneous amino acid distributions of each structural region. Grammatical constraints have been incorporated to the prediction method in order to capture the biological order of membrane protein topology. The proposed method correctly predicted 76% of all membrane spanning regions and 92% sidedness of the integration when all membrane spanning regions were found correctly.

  • PDF

Prediction of Mobile Phone Menu Selection with Markov Chains (Markov Chain을 이용한 핸드폰 메뉴 선택 예측)

  • Lee, Suk Won;Myung, Rohae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.402-409
    • /
    • 2007
  • Markov Chains has proven to be effective in predicting human behaviors in the areas of web site assess, multimedia educational system, and driving environment. In order to extend an application area of predicting human behaviors using Markov Chains, this study was conducted to investigate whether Markov Chains could be used to predict human behavior in selecting mobile phone menu item. Compared to the aforementioned application areas, this study has different aspects in using Markov Chains : m-order 1-step Markov Model and the concept of Power Law of Learning. The results showed that human behaviors in predicting mobile phone menu selection were well fitted into with m-order 1-step Markov Model and Power Law of Learning in allocating history path vector weights. In other words, prediction of mobile phone menu selection with Markov Chains was capable of user's actual menu selection.

A Study on Statistical Modeling of Spatial Land-use Change Prediction (토지이용 공간변화 예측의 통계학적 모형에 관한 연구)

  • 김의홍
    • Spatial Information Research
    • /
    • v.5 no.2
    • /
    • pp.177-183
    • /
    • 1997
  • S1he concept of a class in the land-use classification system can be equally applied to a class in the land-use-change classification. The maximum likelihood method using linear discriminant function and Markov transition matrix method were integrated to a synthetic modeling effort in order to project spatial allocation of land-use-change and quantitative assignment of that prediction as a whole. The algorithm of both the multivariate discriminant function and the Markov chain matrix were discussed and the test of synthetic model on the study area was resulted in the projection of '90 year as well as '95 year land -use classification. The accuracy and the issue of modeling improvement were discussed eventually.

  • PDF

Prediction of Marine Accident Frequency Using Markov Chain Process (마코프 체인 프로세스를 적용한 해양사고 발생 예측)

  • Jang, Eun-Jin;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.266-266
    • /
    • 2019
  • Marine accidents are increasing year by year, and various accidents occur such as engine failure, collision, stranding, and fire. These marine accidents present a risk of large casualties. It is important to prevent accidents beforehand. In this study, we propose a modeling to predict the occurrence of marine accidents by applying the Markov Chain Process that can predict the future based on past data. Applying the proposed modeling, the probability of future marine accidents was calculated and compared with the actual frequency. Through this, a probabilistic model was proposed to prepare a prediction system for marine accidents, and it is expected to contribute to predicting various marine accidents.

  • PDF

Two-Dimensional Model of Hidden Markov Mesh

  • Sin, Bong-Kee
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.772-779
    • /
    • 2006
  • The new model proposed in this paper is the hidden Markov mesh model or the 2D HMM with the causality of top-down and left-right direction. With the addition of the causality constraint, two algorithms for the evaluation of a model and the maximum likelihood estimation of model parameters have been developed theoretically which are based on the forward-backward algorithm. It is a more natural extension of the 1D HMM than other 2D models. The proposed method will provide a useful way of modeling highly variable image patterns such as offline cursive characters.

  • PDF

ANALYZING THE DURATION OF SUCCESS AND FAILURE IN MARKOV-MODULATED BERNOULLI PROCESSES

  • Yoora Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.693-711
    • /
    • 2024
  • A Markov-modulated Bernoulli process is a generalization of a Bernoulli process in which the success probability evolves over time according to a Markov chain. It has been widely applied in various disciplines for modeling and analysis of systems in random environments. This paper focuses on providing analytical characterizations of the Markovmodulated Bernoulli process by introducing key metrics, including success period, failure period, and cycle. We derive expressions for the distributions and the moments of these metrics in terms of the model parameters.

Bayesian Analysis of Binary Non-homogeneous Markov Chain with Two Different Time Dependent Structures

  • Sung, Min-Je
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-35
    • /
    • 2006
  • We use the hierarchical Bayesian approach to describe the transition probabilities of a binary nonhomogeneous Markov chain. The Markov chain is used for describing the transition behavior of emotionally disturbed children in a treatment program. The effects of covariates on transition probabilities are assessed using a logit link function. To describe the time evolution of transition probabilities, we consider two modeling strategies. The first strategy is based on the concept of exchangeabiligy, whereas the second one is based on a first order Markov property. The deviance information criterion (DIC) measure is used to compare models with two different time dependent structures. The inferences are made using the Markov chain Monte Carlo technique. The developed methodology is applied to some real data.

Novel Approach for Modeling Wireless Fading Channels Using a Finite State Markov Chain

  • Salam, Ahmed Abdul;Sheriff, Ray;Al-Araji, Saleh;Mezher, Kahtan;Nasir, Qassim
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.718-728
    • /
    • 2017
  • Empirical modeling of wireless fading channels using common schemes such as autoregression and the finite state Markov chain (FSMC) is investigated. The conceptual background of both channel structures and the establishment of their mutual dependence in a confined manner are presented. The novel contribution lies in the proposal of a new approach for deriving the state transition probabilities borrowed from economic disciplines, which has not been studied so far with respect to the modeling of FSMC wireless fading channels. The proposed approach is based on equal portioning of the received signal-to-noise ratio, realized by using an alternative probability construction that was initially highlighted by Tauchen. The associated statistical procedure shows that a first-order FSMC with a limited number of channel states can satisfactorily approximate fading. The computational overheads of the proposed technique are analyzed and proven to be less demanding compared to the conventional FSMC approach based on the level crossing rate. Simulations confirm the analytical results and promising performance of the new channel model based on the Tauchen approach without extra complexity costs.