• 제목/요약/키워드: Market Model

검색결과 4,931건 처리시간 0.027초

An Approach to the Market Analysis of KoreaSat Services

  • Park, Myeong-Cheol;Choi, Hyuk-Jun
    • ETRI Journal
    • /
    • 제15권2호
    • /
    • pp.53-68
    • /
    • 1993
  • The field of marketing research in the satellite communication services is still in the early stage of its development. Particularly, in Korean domestic satellite service market, many theoretical and methodological opportunities now exist. In this paper we develop a model, which identifies target markets and promising application services in Korean satellite communication service Market. One key contribution of this paper is a modeling approach to the assessment of market potential and priorities of the application services in each Korean industry. We define and estimate the degree of attractiveness for each segmented market which represents the market potential estimated by current usage of terrestrial services and each market segment's willingness to adopt satellite technology. Since all possible satellite application services are not equally important in the market, they should be differentiated in terms of the likelihood of success. We introduce another index prioritizing application services by tying together three important factors affecting Korean satellite service demand. Some marketing implications of model results are also discussed. Finally the findings of our model are compared with those of other similar studies.

  • PDF

The Optimal Timing of Markdowns: A Decision Model for Jean Market (가격인하 최적시기 연구: Jean Market을 대상으로 한 Decision Model를 중심으로)

  • 곽영식;김용준;남용식;이진화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제26권5호
    • /
    • pp.606-617
    • /
    • 2002
  • The purpose of this study is to develop a decision model that helps manufacturers and retailers determine the optimal timing of markdown in order to maximize their profit. An optimal timing decision model was developed based on three steps; conjoint measurement, scenario analysis and simulation. Data were collected from the sample of 149 out of 170 undergraduate and graduate students in Seoul in 1997. From the Jeans market, 8 brands; Levi's, lee, Guess, Calvin Klein, Pintos, Get used, MFG, and Basic, were selected as competitors for this study. In the conjoint measurement, respondents estimated the level of preference, from 1 to 100, for each item in which brand, price, style, and colors were used to explain product characteristics. Then, in order to reflect competitive situation in Jeans market, four types of scenarios were developed. In each scenario, simulations were applied to decide optimal timing of markdowns that leads to maximal profitability and sales volume. The profit was calculated based on the equation; Profit = Jean's market volume x market share of each brand - cost, where market volume was obtained by integral calculus for market utility function, and market share by logit value of part-worth from the conjoint analysis. For the purpose of the parsimony of the research, costs and the level of markdown were fixed to 30% of the regular price. In results, the optimal timing decision model identified 3 different types of brands. The brands that do not need to take markdown were Ievi's, MFG, and Basic Jeans characterized by the highest brand power and the highest price zone. The brands that needed to take early markdowns were Guess, Lee, Calvin Klein, and Get Used with the intermediate level of brand power and price. The brand that need late markdown was Pintos with the weakest brand power among the competitors and the lowest price. The optimal range of markdown remains for further research.

A Study on Market Segmentations and Shopping Orientations of Home Shopping User: Based on Mixture Model (Mixture model에 의한 홈쇼핑 이용자 시장세분화와 쇼핑성향)

  • Seo, Jeong-Ah;Lee, Jin-Hwa;Hong, Jae-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제32권7호
    • /
    • pp.1023-1033
    • /
    • 2008
  • The purpose of this study was to segment home-shopper market by using the demographic characteristics. This study enables a better unders landing of home-shoppers and improving the strategy of marketing. The specific objects of this study are as follow: First, it was to exam market segmentations by demographic factors using mixture model. Second, it was to exam shopping orientations of fashion merchandise according to segmentation groups. The data was collected from 637 subjects who had used the home shopping more than one time in a year. The data was analysised through frequencies, factor analysis, ANOVA, Duncan's mutiple range tests with SPSS 12.0 and Mixture model. The results of data are as follows: 1. The result of market segmentation as demographic factor using Mixture model was extracted to 4 market segments called 20's/ unmarried stage, 30's/ children bearing & rearing stage, 40's/ families with children's education stage, 50's/ aging stage. 2. Shopping orientations were extracted to 5 factors called a pleasure oriented, convenience oriented, off-line oriented, human oriented, thrift oriented.

Market Segmentation With Price-Dependent Quality Evaluation in Denim Jeans Market ; Based on Conjoin analysis and mixture model (청바지제품 세분시장 내 가격-품질 평가집단 추출에 관한 연구: 결합분석과 mixture model를 이용하여)

  • 곽영식;이진화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제26권11호
    • /
    • pp.1605-1614
    • /
    • 2002
  • The purpose of this study was to identify the consumers who use the level of price as the indicator of the product quality. In order to implement the purpose of this study, Jeans market had been segmented by the mixture regression model, and price response function was calibrated for each segment. Based on the types of price response function, segments were allocated into one of two groups; the group using the level of price as the quality indicator or the group not using the level of price as that. Then, characteristics of both groups were compared in terms of product attributes and demographic variables. Data were co]looted from the sample of the 23o undergraduate and graduate students in Seoul. For the data analysis, mixture regression model, conjoint analysis, and t-test were used. As a result, jeans market was divided into 5 segments. Segment 1,2,3 were allocated into the group not using the level of price as the quality indicator while segment 4,5 were done into the other group. Significant differences existed between two groups in product attributes, not in demographic variables. Mixture model and conjoint analysis were proved to be an effective set of tools in market segmentation.

A Practical Study on the New Revenue Estimate Model Of SSM (국내 대형슈퍼의 개량확률모델에 관한 실증연구)

  • Ahn, Sung-Woo;Lee, Sang-Youn;Kim, Pan-Jin;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • 제7권3호
    • /
    • pp.5-24
    • /
    • 2009
  • In the retail management, store location has an important influence like business skills. The reason for failure to selecting location is that the market analysis model is not popular in business field. It gets worse in supermarket industry. Currently, store developers are relying on simple statistics and the sixth sense as market analysis techniques. lt proves that the market analysis model is not distributed well in the field. This market analysis model can apply to medium and small business market using an existing market analysis model, broad market model. And its study outcome can be theorized as a result. Converse's new retail model can be used as to analyze junction market. Pareto_Huff model can also be used to compute shopping probability. To do so, this study can be divided into walking distance market and driving distance market as a model market. Also it examines industry type such as SM and SSM. By taking consumer survey, condition of consumers to select store will be counted in shopping probability so that it improves the objectivity and reliability. Through this process, derived study outcome can be a new estimated revenue model for practical application of selecting store location in large and medium-sized supermarket.

  • PDF

A Study on the Market Structure Analysis for Durable Goods Using Consideration Set:An Exploratory Approach for Automotive Market (고려상표군을 이용한 내구재 시장구조 분석에 관한 연구: 자동차 시장에 대한 탐색적 분석방법)

  • Lee, Seokoo
    • Asia Marketing Journal
    • /
    • 제14권2호
    • /
    • pp.157-176
    • /
    • 2012
  • Brand switching data frequently used in market structure analysis is adequate to analyze non- durable goods, because it can capture competition between specific two brands. But brand switching data sometimes can not be used to analyze goods like automobiles having long term duration because one of main assumptions that consumer preference toward brand attributes is not changed against time can be violated. Therefore a new type of data which can precisely capture competition among durable goods is needed. Another problem of using brand switching data collected from actual purchase behavior is short of explanation why consumers consider different set of brands. Considering above problems, main purpose of this study is to analyze market structure for durable goods with consideration set. The author uses exploratory approach and latent class clustering to identify market structure based on heterogeneous consideration set among consumers. Then the relationship between some factors and consideration set formation is analyzed. Some benefits and two demographic variables - age and income - are selected as factors based on consumer behavior theory. The author analyzed USA automotive market with top 11 brands using exploratory approach and latent class clustering. 2,500 respondents are randomly selected from the total sample and used for analysis. Six models concerning market structure are established to test. Model 1 means non-structured market and model 6 means market structure composed of six sub-markets. It is exploratory approach because any hypothetical market structure is not defined. The result showed that model 1 is insufficient to fit data. It implies that USA automotive market is a structured market. Model 3 with three market structures is significant and identified as the optimal market structure in USA automotive market. Three sub markets are named as USA brands, Asian Brands, and European Brands. And it implies that country of origin effect may exist in USA automotive market. Comparison between modal classification by derived market structures and probabilistic classification by research model was conducted to test how model 3 can correctly classify respondents. The model classify 97% of respondents exactly. The result of this study is different from those of previous research. Previous research used confirmatory approach. Car type and price were chosen as criteria for market structuring and car type-price structure was revealed as the optimal structure for USA automotive market. But this research used exploratory approach without hypothetical market structures. It is not concluded yet which approach is superior. For confirmatory approach, hypothetical market structures should be established exhaustively, because the optimal market structure is selected among hypothetical structures. On the other hand, exploratory approach has a potential problem that validity for derived optimal market structure is somewhat difficult to verify. There also exist market boundary difference between this research and previous research. While previous research analyzed seven car brands, this research analyzed eleven car brands. Both researches seemed to represent entire car market, because cumulative market shares for analyzed brands exceeds 50%. But market boundary difference might affect the different results. Though both researches showed different results, it is obvious that country of origin effect among brands should be considered as important criteria to analyze USA automotive market structure. This research tried to explain heterogeneity of consideration sets among consumers using benefits and two demographic factors, sex and income. Benefit works as a key variable for consumer decision process, and also works as an important criterion in market segmentation. Three factors - trust/safety, image/fun to drive, and economy - are identified among nine benefit related measure. Then the relationship between market structures and independent variables is analyzed using multinomial regression. Independent variables are three benefit factors and two demographic factors. The result showed that all independent variables can be used to explain why there exist different market structures in USA automotive market. For example, a male consumer who perceives all benefits important and has lower income tends to consider domestic brands more than European brands. And the result also showed benefits, sex, and income have an effect to consideration set formation. Though it is generally perceived that a consumer who has higher income is likely to purchase a high priced car, it is notable that American consumers perceived benefits of domestic brands much positive regardless of income. Male consumers especially showed higher loyalty for domestic brands. Managerial implications of this research are as follow. Though implication may be confined to the USA automotive market, the effect of sex on automotive buying behavior should be analyzed. The automotive market is traditionally conceived as male consumers oriented market. But the proportion of female consumers has grown over the years in the automotive market. It is natural outcome that Volvo and Hyundai motors recently developed new cars which are targeted for women market. Secondly, the model used in this research can be applied easier than that of previous researches. Exploratory approach has many advantages except difficulty to apply for practice, because it tends to accompany with complicated model and to require various types of data. The data needed for the model in this research are a few items such as purchased brands, consideration set, some benefits, and some demographic factors and easy to collect from consumers.

  • PDF

Electricity Price Prediction Model Based on Simultaneous Perturbation Stochastic Approximation

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.14-19
    • /
    • 2008
  • The paper presents an intelligent time series model to predict uncertain electricity market price in the deregulated industry environment. Since the price of electricity in a deregulated market is very volatile, it is difficult to estimate an accurate market price using historically observed data. The parameter of an intelligent time series model is obtained based on the simultaneous perturbation stochastic approximation (SPSA). The SPSA is flexible to use in high dimensional systems. Since prediction models have their modeling error, an error compensator is developed as compensation. The SPSA based intelligent model is applied to predict the electricity market price in the Pennsylvania-New Jersey-Maryland (PJM) electricity market.

A Development Study for Fashion Market Forecasting Models - Focusing on Univariate Time Series Models -

  • Lee, Yu-Soon;Lee, Yong-Joo;Kang, Hyun-Cheol
    • Journal of Fashion Business
    • /
    • 제15권6호
    • /
    • pp.176-203
    • /
    • 2011
  • In today's intensifying global competition, Korean fashion industry is relying on only qualitative data for feasibility study of future projects and developmental plan. This study was conducted in order to support establishment of a scientific and rational management system that reflects market demand. First, fashion market size was limited to the total amount of expenditure for fashion clothing products directly purchased by Koreans for wear during 6 months in spring and summer and 6 months in autumn and winter. Fashion market forecasting model was developed using statistical forecasting method proposed by previous research. Specifically, time series model was selected, which is a verified statistical forecasting method that can predict future demand when data from the past is available. The time series for empirical analysis was fashion market sizes for 8 segmented markets at 22 time points, obtained twice each year by the author from 1998 to 2008. Targets of the demand forecasting model were 21 research models: total of 7 markets (excluding outerwear market which is sensitive to seasonal index), including 6 segmented markets (men's formal wear, women's formal wear, casual wear, sportswear, underwear, and children's wear) and the total market, and these markets were divided in time into the first half, the second half, and the whole year. To develop demand forecasting model, time series of the 21 research targets were used to develop univariate time series models using 9 types of exponential smoothing methods. The forecasting models predicted the demands in most fashion markets to grow, but demand for women's formal wear market was forecasted to decrease. Decrease in demand for women's formal wear market has been pronounced since 2002 when casualization of fashion market intensified, and this trend was analyzed to continue affecting the demand in the future.

An Empirical Analysis of Market Power in The Dallas-Forth Worth Milk Market (Dallas-Forth Worth 우유시장의 시장지배력 측정에 관한 연구)

  • KIM, Donghun
    • International Area Studies Review
    • /
    • 제14권3호
    • /
    • pp.35-60
    • /
    • 2010
  • In this paper, we develop a dynamic structural model based on a dynamic supergame and measure market power for the Dallas-Forth Worth fluid milk market in the U.S. In particular, we compare the conduct parameter estimates from a static model with that from the dynamic model and illustrate bias in the market-power measure in a static model. And we also analyze the cyclical behavior of firm conduct. We find that the conduct parameter in a static model underestimates true market power if firms' behaviors are posited by a dynamic oligopoly game. We also verify that firm conduct in the Dallas-Forth Worth fluid milk market is countercyclical against demand shocks and expected future cost shocks. Our results indicate that the firms' conduct in the Dallas-Forth Worth fluid milk market is consistent with what dynamic oligopoly models predict. This implies that the firms consider not only the contemporary reactions of the other firms' but also future market competition. Therefore, the measurement of market power requires the specification of fully dynamic pricing relationship.

A FILTERING FOR DISCRETE MARKET SYSTEM WITH UNKNOWN PARAMETERS

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.383-387
    • /
    • 2008
  • The problem of recursive filtering for discrete market model with unknown parameters is considered. In this paper, we develop an effective filtering algorithm for discrete market systems with unknown parameters and the error covariance equation determining the accuracy of the proposed algorithm is derived.

  • PDF