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Electricity Price Prediction Model Based on
Simultaneous Perturbation Stochastic Approximation

Hee-Sang Ko*, Kwang Y. Lee** and Ho-Chan Kim'

Abstract — The paper presents an intelligent time series model to predict uncertain electricity market
price in the deregulated industry environment. Since the price of electricity in a deregulated market is
very volatile, it is difficult to estimate an accurate market price using historically observed data. The
parameter of an intelligent time series model is obtained based on the simultaneous perturbation
stochastic approximation (SPSA). The SPSA is flexible to use in high dimensional systems. Since
prediction models have their modeling error, an error compensator is developed as compensation. The
SPSA based intelligent model is applied to predict the electricity market price in the Pennsylvania—

New Jersey—Maryland (PJM) electricity market.
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stochastic approximation

1. Introduction

Many countries are restructuring their electrical power
industry as a means of introducing deregulation and
competition by unbundling generation, transmission and
distribution functions, and allowing open market access.
In the deregulated environment, a market-based system of
electricity transactions has been introduced [1] where
electricity is traded as a commodity and the balance of
supply and demand significantly influences its price. The
theory of electricity spot marketpricing states that the
hourly spot price can be determined by such factors as
fuel and maintenance costs, the availability of generator
and network, and costs to compensate for transmission
losses [2].

The electrical power industries have seen many changes
over the last decade. Regulated or state-owned monopoly
markets have been deregulated. This happened first in the
United Kingdom and New Zealand, followed several
years later by Sweden, Norway, Australia, New England,
New York, California, and Pennsylvania—New Jersey—
Maryland (PIM) {3, 4]. In Canada, market-based
electricity pricing has come to Alberta and is coming to
Ontario.

There is no reason why producers and consumers of
clectrical power cannot meet in a properly designed
marketplace to decide on the price of their product. But
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electrical power is different from most other commaodities.
It cannot appreciably be stored and system stability
requires constant balance between supply and demand.
Most users of electricity are, on short time scales, unaware
of or indifferent to its price. These two facts drive the
extreme price volatility or price spikes of the electrical
power market.

In the modeling of spot price of electricity, one
common approach is to observe the price for a long period
and fit a statistical model based on the observed time
series [5]. The other approach is called Ryan and
Mazumdar production costing model, used to represent
the main variables that affect the spot price of electricity
[6]. In that work, the information on the probability
distribution of prices is of particular use in managing risk
and improving decision-making. Moreover, the estimated
price depends on many factors such as the periodicity of
demand, temperature, and other meteorological influences,
the loading order of generators, ctc. Traditional methods
based on statistical and probabilistic approaches may not
be suitable to represent data generated by human activities
such as the prices in the power exchange market. For
example, market-based transactions of electricity tend to
make prices more volatile in the high demand region than
in the low demand region, depreciating the traditional
assumption of random process [7].

In this paper, the uncertain market prices are
represented by an intelligent time-series model. The
parameter of the intelligent time-series model is obtained
by the simultaneous perturbation stochastic approximation
(SPSA) [8]. Most mathematical algorithms for search and
optimization play a large role in finding the best solutions
in many problems. They start with an initial guess, and
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this predicted solution is updated on an iteration-by-
iteration basis with the aim of improving the performance
measure. The powerful merit of the SPSA is that it uses
perturbation signals. Such signals actually help in finding
the global optimum because a possibility to be trapped in
a local minimum can be minimized. This is the main
advantage of the SPSA.

Since prediction models always have a modeling error,
this paper presents an error compensator to compensate
for the modeling error. The proposed model is applied to
the Pennsylvania—New Jersey-Maryland (PJM) hourly
time-series electricity market data [4].

2. An Intelligent Time-Series Model Based on the
Newton-Backward Operator

Consider a nonlinear time-invariant discrete-time
system, represented by

Y1) = f(y(k), yk =1),:-, y(k = N)) (1)

where y(k-i), i=0,1,---,N denote the delayed data. It

can be shown that the delayed signals are made of
increments or differences. The Newton backward
difference operator [9] is defined as

A" F)= A" (k) - A" f(k-1), n>1

. @)
A f (k)= £ (k)

Using the difference operator (2), the model (1) can be
represented as

yk+1) = £ (k). Ap(k), -+, A" y(k)) 3)
Equation (3) is expanded into Taylor series in [9].

vk +1) = f(y(k), Ay(k),--, AN y(k))
= flk =1, AN y(k —1))

_9 =TV s
+[6y(k—1)j(y(k) y(k=1))+ @
of N N
—7 AN ) =AY y(k -1
+[8AyN(k—1)J( y(k)=A" y(k-1))

N .
= (k) + Y a;A y(k) + O(k)
i=1

1

where 257 A and  O(k) represents the high
oAy (k—1)

order terms. By subtracting y(k), (4) can be represented

as follows:

N
Ap(k+1) = a;A y(k) + O(k) )
i=1

/\,
By neglecting high order terms, the free model is
defined as the following:

~ N .
Ay(k+1) = a;A"y(k) (6)
i=1

or, dividing both sides with A,

~ N .
yk+1) =Y A k) %
i=1

where N is the order of the proposed intelligent time-
series prediction model, and )A/(k+1) denotes the
estimate of y(k+1). The remaining problem now is how

to determine parameters «;.

3. The Description of the Error Compensator

For better accuracy, it is required to consider a wide
range of fluctuating conditions. In real application,
however, it is impractical to consider all conditions.
Therefore, when the prices are fluctuating, errors between

" the predicted value and real value inevitably exist even

though the intelligent time-series model may have been
completely trained for a previously given data set. Thus,
there exists a modeling error E(k) at time k. The

predicted value considering the modeling error becomes
as follows:

y (k+D) =Pk +1)+E(k+1) ®)

where E(k+1) is the estimate of the modeling error

E(k+1), p(k+1)is the predictor output in (7), and

y* (k +1) is the corrupted estimate.

The error can be estimated by extrapolating the
previous error using the Newton-backward-difference
formula (NBDF) [10] as follows:

! ¥
3 =N (= r 9
E(k+1) rzzl( D [HJA E(k) ®
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where FE(k)= y(k)— p(k)is the modeling error at time &,

A" is the backward difference operator defined in (2), /
is the extrapolation order, and the binomial-coefficient
notation is defined as

r =r(r—l)---(r—l) (10)
[+1 (+1)!

4. Simultaneous Perturbation Stochastic
Approximation

To determine parameters, the SPSA method is applied
[8] to the least squares problem, which is defined to
minimize the loss function E(8):

Min E(6) = Zn:(y(k—m)—;(k—m))z 1
i=1

where (9=[a1---aN]T is the parameter vector of the

prediction model, and y and )A) indicate the real data

and estimated data of the proposed prediction model,
respectively.

The stochastic optimization is of great practical
importance, which may be stated as the problem of

finding a minimum point, & €R? , of a real-valued
function L(8) or the loss function that is observed in the

presence of noise. A common desire of optimization
problems in many applications is that the algorithm
reaches the global minimum rather than becoming
stranded at a local minimum value. The SPSA uses only
the measurements of objective function. This contrasts
with other algorithms requiring direct measurements of
the gradient of the objective function, which are often
difficult or impossible to obtain. Furthermore, the SPSA is
especially efficient in high-dimensional problems in terms
of providing a good solution with a relatively small
number of measurements of the objective function. The
essential feature of the SPSA, which provides its power
and relative ease of wuse in difficult multivariate
optimization problems, is the underlying gradient
approximation that requires only two measurements of
objective function per iteration, regardless of the
dimension of the -optimization problem. These two
measurements are made by simultaneously varying in a
proper random fashion all of the variables in the problem.
This contrasts with the classical finite-difference method
where the variables are varied one at a time. If the number
of variables being optimized is p, then the finite-

difference method takes 2p measurements of the

objective function at each iteration to form one gradient
approximation while the SPSA takes only two
measurements.

A fundamental result on relative efficiency is as
follows: Under reasonably general conditions, the SPSA
achieves the same level of statistical accuracy for a given
number of iterations even though SPSA uses p times
fewer measurements of the objective function at each
iteration. This indicates that the SPSA will converge to the
optimal solution within a given level of accuracy with p
times fewer measurements of the objective function than
the standard gradient method. Furthermore, the SPSA
formally accommodates noisy measurements of the
objective function. This is an important practical concern
in a wide variety of problems involving Monte Carlo
simulations, physical experiments, feedback systems, or
incomplete knowledge such as fluctuating electricity
market price.

The basic unconstrained SPSA algorithm is in the
general recursive stochastic approximation (SA) form

Bs1 = Ok — 1 2 (Ox) (12)

where § X (9k) is the simultaneous perturbation estimate

of the gradient g(8)=0L(8)/06 at the iterate Ok
based on the measurements of the loss function and 7

is a nonnegative scalar gain coefficient.
The essential part of (12) is the gradient approximation

ék (9k)- This gradient approximation is formed by

perturbing the components of Or one at a time and
collecting a loss measurement FE(») at each of the
perturbations. This requires 2p loss measurements for a
two-sided finite difference approximation. All elements of
Oy are randomly perturbed together to obtain two loss
measurements E(¢) . For the two-sided simultaneous

perturbation gradient approximation, this leads to

-1

Au

- - -1

~ E@r +c A)—E(Br —c A
200 = ( 1Ar) — E@k — i Ap) A.kz (13)
2Ck R

-1

Ap
where the mean-zero p -dimensional random

perturbation vector, A, =[Ay, Ay, A, 1" » has a user-

specified distribution and ¢, is a positive scalar. Because
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the numerator is the same in all p components of

ék(@’k) , the number of loss measurements needed to
estimate the gradient in SPSA is two, regardless of the
dimension p.

The procedure how the SPSA iteratively produces a
sequence of estimates is summarized as below:

Step 1: Initialization and coefficient selection
e _ Lo

Pick initial guess 6, of €)==, oty in (12) and

nonnegative coefficients 7, ¢, 4, @, and ¥ in the SPSA

gain sequences y, =p/(4+4+1)® and c; =c/(k+1)7

Step 2: Generation of simultaneous perturbation vector
Generate a p -dimensional random perturbation vector

Ay from a zero-mean probability distribution.

Step 3: Loss function evaluations

From Steps 1 and 2, obtain two measurements of the loss
function based on the simultaneous perturbation around
the current &y 1 E@+cay) and EGy -, in (13)
with the ¢y and Ay .

Step 4: Gradient approximations
Generate the simultaneous perturbation approximation to
the unknown gradient 2, (0r) according to (13).

Step 5: Updating 6% estimate
Use the standard stochastic approximation form in (12)

to update ék to a new value ék+1 .

Step 6: Iteration or Termination
Return to Step 2 with k+1 replacing k. Terminate the

algorithm if the maximum allowable number of iterations
has been reached.

5. Numerical Example

The proposed intelligent time-series model is applied to
the Pennsylvania-New Jersey-Maryland (PIM) [4] system
for demonstration. In this example, the hourly time-series
data is used. The time-series data is first normalized by
zero-mean unit variance as follows:

y =X_Inxlf

, (14)
v
Lpastd(y)

Xscaled =

where x is the time-series data, [ is the identity matrix
n is the total number of data, X is the mean value of x,
and std stands for the standard deviation. A 2000 time-
series data is used. For training, 500 time series data is
used, and 1500 time series data is used for the validation.
Numerical values for the SPSA and the model are
[a ap a3 a4 a5]=[0.95 -0.0593 0.1087 -0.1313 0.0539] ,

0=0.5, y=0.1, ¢=0.01

The prediction result shows very good accuracy, and all
price spikes are correctly predicated. Fig. 1 and Fig. 2
indicate the results of training and validation, respectively.
The order of the intelligent time-series model and the error
compensator is chosen by 5 (N =/=5) in (7) and (9).
The reason to choose N =35 is to consider the extension

e

of the prediction for weekly forecasting. The mean square
error (MSE) according to the iteration is given in Table 1.
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Fig. 1. The comparison of the scaled electricity market

price between the actual values and the predicted

values.

Scaled electricity market price

Time(hour)

Fig. 2. The comparison of the scaled electricity market
price between the actual values and the predicted
values.



18 Electricity Price Prediction Model Based on Simultaneous Perturbation Stochastic Approximation

Table 1. Mean Square Error

Mean Square Error
Iteration 500 - 1500 (Valldatl'on)
i, Without Error| With Error
(training)

Compensator | Compensator

1000 | 0.0199 0.0266 0.0239

3000 0.0079 0.0101 0.0089

5000 0.0032 0.0038 0.0038

7000 0.0023 0.0027 0.0025

10000 0.0021 0.0024 0.00237

6. Conclusion

This paper presented an intelligent time series model.
The parameters of the intelligent time-series model are
obtained based on the simultaneous perturbation
stochastic approximation. There are three main advantages
in the SPSA: free from high-dimensional problems,
possible maximization of global optimization, and fast
speed for making prediction. The prediction is accurate,
and all price spikes are correctly predicted. Therefore, the
proposed model can be an effective tool for an electricity
supplier or broker to determine a price to offer a contract,
which is attractive to a target customer. For future work,
the next day electricity market price and long term
prediction including monthly and yearly forecast will be
conducted.
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