• Title/Summary/Keyword: Marine zooplankton

Search Result 146, Processing Time 0.023 seconds

Ecosystem Consequences of an Anomalously High Zooplankton Biomass in the South Sea of Korea

  • Kang, Young-Shil;Rebstock, Ginger-A.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.207-211
    • /
    • 2004
  • We used long time series of hydrographic and biological variables to examine the ecosystem consequences of a rare, anomalous event in the south sea of Korea. The highest zooplankton biomass in 36 years of sampling occurred in April 1997. Zooplankton biomass exceeded 2 times than the long-term mean at 35% of the stations. Copepod abundance was low in April and June and also failed to show a seasonal peak in 1997. Mackerel (Scomber japonicus) catches were very low in spring 1997 and 1999, in spite of a positive correlation between zooplankton biomass and mackerel catches at lags of 0, 12 and 24 months. It was discussed that a high zooplankton biomass with low copepod abundance in April 1997 resulted from unusual high temperature and salps abundance. Water temperatures were ca. $2^{\circ}C$ higher than the long-term mean at the surface. Salps and doliolids (thaliaceans), especially the warm-water species Doliolum nationalis, dominated the zooplankton. An unusual incursion of the Tsushima Warm Current may have transported the thaliaceans into the area and/or produced favorable conditions for a bloom. This study suggested that taxonomic composition of zooplankton was important to decide mackerel catches.

Environmental Factors Affecting Zooplankton Community in Gwangyang Bay (광양만 동물플랑크톤 군집 동태에 영향을 미치는 환경요인)

  • Lee, Eun Hye;Seo, Min Ho;Yoon, Yang-Ho;Choi, Sang-Duk;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.631-639
    • /
    • 2017
  • The relationship between the environmental factors (water temperature, salinity, chlorophyll-a concentration, Noctiluca scintillans density, Diatoms and Dinoflagellates densities) and the zooplankton community was investigated. Zooplankton were seasonally collected at 11 stations of Gwangyang Bay from November 2015 to July 2016. A mean abundance ranged from 544 to $19,753indiv.\;m^{-3}$. The maximum abundance was observed to be $40,000indiv.\;m^{-3}$ in July and the minimum occurred in November with $412indiv.\;m^{-3}$. The zooplankton consisted of 35 taxa, which is dominated by Paracalanus parvus s. l., Corycaeus spp., Oithona spp., Acartia omorii, A. ohtsukai, Centropages abdominalis, unidentified harpacticoids. The result of the Redundancy Analysis (RDA) conducted between the zooplankton and the environmental factors showed that the spring-autumn, summer and winter are separated. The summer was closely related to temperature and diatom density, while the winter was linked to salinity and N. scintillans density (p<0.05).

Seasonal Variation in Zooplankton Related to North Pacific Regime Shift in Korea Sea (북태평양체제전환 (North Pacific Regime Shifts)과 한반도 주변해역 동물플랑크톤 계절주기 변동 특성)

  • Kang, Young-Shil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.493-504
    • /
    • 2008
  • In the seas around the Korean Peninsula, the seasonal cycle of zooplankton related to North Pacific regime shifts was investigated to understand the reaction of the ecosystem to climate change using long-term data on zooplankton biomass (1965-2000) and the abundance of four major zooplankton groups: copepods, amphipods, chaetognaths, and euphausiids (1978-2000). In general, the zooplankton biomass showed a large peak in spring and a small peak in autumnin Korean waters, but there was a slight difference in the peak time depending on the location and the period before and after the North Pacific regime shift. The zooplankton biomass showed conspicuous seasonal peaks in R-III (1990-2000) compared to R-I (1965-1976) and R-II (1977-1988), and the seasonal peak shifted from the autumn in R-II to the spring in R-III. The peak of copepods and euphausiids in abundance was from April to June, while chaetognaths peaked from August to October. We postulate that the time lag between the peaks for copepods and chaetognaths results from the predator-prey relationship. The regime shift in 1989 did not alter the seasonal cycle of the four major zooplankton groups, although it enhanced their production. The seasonal peaks of the four major zooplankton groups did not shift, while the seasonal peaks of the zooplankton biomass did shift. This was not only becausethe zooplankton biomass included other mesozooplankton groups but also because the abundance of the four major zooplankton groups increased significantly in spring.

Seasonal distribution of marine organisms in the surface layer around nuclear power plants using acoustic (원자력발전소 주변 표층해역에 출현하는 해양생물의 계절별 음향산란 분포)

  • Eun-Bi MIN;Tae-Jong KANG;Yeongtae SON;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • In this study, the seasonal distribution was surveyed using acoustic in the coastal waters around nuclear power plants. Acoustic surveys were conducted in June, September, December 2022, and March 2023 in the coastal waters of Uljin-gun. According to the results of this study, zooplankton were distributed at the depths from 0 m to 50 m in the waters around nuclear power plants. Zooplankton appeared in summer (June), autumn (September), and spring (March). In the survey area, fish were distributed at the depths from 25 m to 190 m, appearing in the summer (June), autumn (September), winter (December) and spring (March). The SV of zooplankton appearing in the survey area ranged from -98.0 dB to -78.0 dB, and it exhibited a one-class in the frequency distribution of SV. The SV of fish appearing in the survey area ranged from -36.0 dB to -35.0 dB and -98.0 dB to -53.0 dB, and it exhibited two-class in the frequency distribution of SV.

Seasonal Changes of Zooplankton Communities along the Coast of Geumo Arichipelago, Yeosu (여수 금오열도 연안에서 동물플랑크톤 군집의 계절 변동)

  • Oh, Hyun-Ju;Moon, Seong Yong;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.192-203
    • /
    • 2013
  • To understand the seasonal changes in the zooplankton community, we investigated their occurrence patterns and environmental factors during four seasons at 9 stations along the coast of Geumo Archipelago, Yeosu. A total of 44 taxa were sampled, with an abundance ranging from 15~$28,183inds.\;m^{-3}$, among which Noctiluca scintillans predominented. Noctiluca scintillans, Paracalaus parvus s. l., Acartia (Acartiura) omorii, Oithona spp., Aidanosagitta crassa, dedapods larvae, copepods nauplii, and copepodites were the most abundant taxa detected. Species diversity of zooplankton was high in autumn and winter, but it was relatively low in summer and spring. Non-metric multidimensional scaling (nMDS) revealed significant differences in the structures of the zooplankton community among the seasons. Our results showed that the seasonal variation in zooplankton community along the coast of Guemo Archipelago, Yeosu were attributable to seasonal changes in temperature, salinity, and Chl. a concentration. Additionally, this particularly study area might have been specifically influenced by occurs of the neritic species.

Examination of Theoretical Acoustic Scattering Models for Copepods in an Acoustical Zooplankton Biomass Survey (음향자원조사를 위한 동물플랑크톤 요각류의 음향산란이론모델의 검토)

  • Hwang, Bo-Kyu;Shin, Hyeon-Ok;Lee, Dae-Jae;Lee, You-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.380-385
    • /
    • 2010
  • Several theoretical acoustic scattering models were applied to estimate the target strength (TS) for assessing the biomass of zooplankton, to overcome the difficulty of direct measurements. Acoustical scattering characteristics of copepods were estimated using three theoretical models, and the application of the models was evaluated for four frequencies of a scientific echo sounder. The scattering directivity by the body shapes of copepods at 200 kHz and 420 kHz was significantly affected by TS patterns. Averaged TS, however, were similar at higher frequencies. Consequently, a low frequency model, such as a truncated fluid sphere model, provides a good acoustical biomass estimation. The regressions of TS and 30 logL were < $TS_{200\;kHz}$ >= 30logL-118.4 ($R^2=0.716$) and < $TS_{420 kHz}$ > =30 logL-108.8 ($R^2=0.758$), respectively.

Pre-Monsoon Dynamics of Zooplankton Community in the Downstream of the Gagok Stream, Eastward into the East Sea, Korea

  • Kim, Saywa
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.2
    • /
    • pp.223-229
    • /
    • 2015
  • Pre-monsoon dynamics of zooplankton community were investigated in the downstream of the Gagok stream flowing into the East Sea of Korea. Monthly sampling was carried out to collect zooplankters at five sites in the stream during the period between April and July 2014. Dissolved oxygen contents exceeded $7.0mg\;L^{-1}$ all the time. Water temperature was in a range of 15.7 to $24.9^{\circ}C$ and pH 7.4 to 8.8, respectively. A total of 75 taxa consisted of 36 species of rotifers, 16 species of cladocerans, 16 species of copepods, four kinds of aquatic insects, two kinds of decapods and one nematod was occurred. One species of marine copepod and one cladoceran, and one species of brackish rotifer and one copepod distributed at the station located in the stream mouth. Zooplankton abundance showed to vary from 42 to 4202 individuals $m^{-3}$ due to the explosion of aquatic insects and Alona sp. at site 2 located in the downstream in April. Heavy rainfall during the monsoon period seems to decrease the zooplankton abundance caused by diffusion and drifting to the sea. Species diversity indices were generally high between 1.2~2.3 and were recorded to be high at the downstream throughout the study period. With the zooplankton dynamics, the influence of the input of sea waters into the stream seemed to be confined to some hundred meters of the stream mouth facing the East Sea.

Characteristics of temporal-spatial variations of zooplankton community in Gomso Bay in the Yellow Sea, South Korea (서해 곰소만에 출현하는 동물플랑크톤 군집의 시·공간적 변동 특성)

  • Young Seok Jeong;Min Ho Seo;Seo Yeol Choi;Seohwi Choo;Dong Young Kim;Sung-Hun Lee;Kyeong-Ho Han;Ho Young Soh
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • To understand the spatiotemporal distribution pattern of zooplankton and the environmental factors influencing zooplankton abundance in Gomso Bay, major harvesting area of Manila clam (Venerupis philippinarum) in South Korea, zooplankton sampling was conducted four times in autumn (October 2022), winter (January 2023), early spring (March 2023), and spring (May 2023). Among the environmental factors of Gomso Bay, water temperature, chlorophyll a concentration (Chl-a), dissolved oxygen (DO), and pH observed different patterns, while salinity and suspended particulate matter(SPM) showed no significant statistical differences between the survey periods. The zooplankton in Gomso Bay occurred 33, 29, 27, and 29 taxonomic groups during each respective survey period. In October 2022 and May 2023, arthropod plankton were dominated, while in January and March 2023, protozoa were primarily dominant. Among the Arthropods, copepods including Acartia hongi, Paracalanus parvus s. l., Corycaeus spp., and Oithona spp. commonly found along Korean coastal areas of the Yellow Sea, were dominated. Cluster analysis based on zooplankton abundance indicated a single community (stable condition) in each season, attributed to low dissimilarity distances, while three distinct clusters (autumn, winter-early spring, spring) between seasons indicated a highly seasonal environment in Gomso Bay.

Analysis of the Lower Trophic Level of the Northern East China Sea Ecosystem based on the NEMURO Model (북부 동중국해 생태계의 NEMURO모델에 의한 하위생태계 분석)

  • Lee, Jong-Hee;Zhang, Chang-Ik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.15-26
    • /
    • 2008
  • The NEMURO model is aimed to efficiently understand the interaction among factors of lower trophic level of a marine ecosystem, using data on solar radiation and sea water temperature. In this study, we analyzed the seasonal pattern of nutrients and planktons, and estimated productivity and biomass of planktons from 2002 to 2005. Nutrients($NO_3$, $NH_4$, and $Si(OH)_4$) which were used by phytoplankton showed a high concentration before the bloom of phytoplankton. Nutrients (DON, PON, and Opal) which were a byproduct of phytoplankton showed a high concentration in the same period as the bloom of phytoplankton. Both phytoplankton and zooplankton had two peaks in March and August. Estimated phytoplankton biomass from the NEMURO model showed a similar pattern with observed chlorophyll a concentrations. Biomasses of phytoplankton were bigger than those of zooplankton. Annual mean biomasses of small and large phytoplankton were estimated at 30.961 and $14.070\;{\mu}g\;l^{-1}$ respectively. Annual mean biomass of predatory zooplankton was greater than those of small and large zooplankton.

The Spatio-temporal Distribution of Zooplankton Communities in the Northern Yellow Sea During Autumn and Winter (가을-겨울철 황해 북부의 동물플랑크톤 시공분포 특성)

  • Lim, Dong-Hyun;Yoon, Won-Duk;Yang, Joon-Yong;Lee, Yoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.339-344
    • /
    • 2009
  • The joint cruises of six times between Korea and China were carried out for a better understanding of the environmental and oceanographical characteristics of the Yellow Sea for 6 years from 1998 to 2003. Zooplankton samples were collected one time per year at 24 stations on 3 lines of the Yellow Sea. The aim of this study is to understand the seasonal fluctuation of zooplankton community in the Yellow Sea. There is no trend on the spatio-temporal distribution of zooplankton. Copepoda, the major taxon of the Yellow Sea, was high in distribution in the eastern part and Chaetognatha in the western part of the Yellow Sea. In this results, the dominant copepods were Calanus sinicus, Paracalanus parvus s.l., Oithona atlantica, and Corycaeus affinis during the study periods. The density fluctuation of these dominant species may be an important factor in determining the fisheries resource of the Yellow Sea.

  • PDF