• Title/Summary/Keyword: Marine Seismic

Search Result 257, Processing Time 0.025 seconds

A Study on the Field Data Applicability of Seismic Data Processing using Open-source Software (Madagascar) (오픈-소스 자료처리 기술개발 소프트웨어(Madagascar)를 이용한 탄성파 현장자료 전산처리 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.

A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea (동해의 메탄 하이드레이트 매장 지역에서의 해양 심부 견인 전기비저항 탐사)

  • Goto, Tada-Nori;Kasaya, Takafumi;Machiyama, Hideaki;Takagi, Ryo;Matsumoto, Ryo;Okuda, Yoshihisa;Satoh, Mikio;Watanabe, Toshiki;Seama, Nobukazu;Mikada, Hitoshi;Sanada, Yoshinori;Kinoshita, Masataka
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2008
  • We have developed a new deep-towed marine DC resistivity survey system. It was designed to detect the top boundary of the methane hydrate zone, which is not imaged well by seismic reflection surveys. Our system, with a transmitter and a 160-m-long tail with eight source electrodes and a receiver dipole, is towed from a research vessel near the seafloor. Numerical calculations show that our marine DC resistivity survey system can effectively image the top surface of the methane hydrate layer. A survey was carried out off Joetsu, in the Japan Sea, where outcrops of methane hydrate are observed. We successfully obtained DC resistivity data along a profile ${\sim}3.5\;km$ long, and detected relatively high apparent resistivity values. Particularly in areas with methane hydrate exposure, anomalously high apparent resistivity was observed, and we interpret these high apparent resistivities to be due to the methane hydrate zone below the seafloor. Marine DC resistivity surveys will be a new tool to image sub-seafloor structures within methane hydrate zones.

Overpressure prediction of the Efomeh field using synthetic data, onshore Niger Delta, Nigeria (합성탄성파 기록을 이용한 나이지리아의 나이저 삼각주 해안 에포메(Efomeh) 지역의 이상고압 예측)

  • Omolaiye, Gabriel Efomeh;Ojo, John Sunday;Oladapo, Michael Ilesanmi;Ayolabi, Elijah A.
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • For effective and accurate prediction of overpressure in the Efomeh field, located in the Niger delta basin of Nigeria, integrated seismic and borehole analyses were undertaken. Normal and abnormal pore pressure zones were delineated based on the principle of normal and deviation from normal velocity trends. The transition between the two trends signifies the top of overpressure. The overpressure tops were picked at regular intervals from seismic data using interval velocities obtained by applying Dix's approximation. The accuracy of the predicted overpressure zone was confirmed from the sonic velocity data of the Efomeh 01 well. The variation to the depth of overpressure between the predicted and observed values was less than 10mat the Efomeh 01 well location, with confidence of over 99 per cent. The depth map generated shows that the depth distribution to the top of the overpressure zone of the Efomeh field falls within the sub-sea depth range of 2655${\pm}$2m (2550 ms) to 3720${\pm}$2m (2900 ms). This depth conforms to thick marine shales using the Efomeh 01 composite log. The lower part of the Agbada Formation within the Efomeh field is overpressured and the depth of the top of the overpressure does not follow any time-stratigraphic boundary across the field. Prediction of the top of the overpressure zone within the Efomeh field for potential wells that will total depth beyond 2440m sub-sea is very important for safer drilling practice as well as the prevention of lost circulation.

Stratigraphy and Paleoenvironment of Domi-1 and Sora-1 Wells, Domi Basin (도미분지 도미-1, 소라-1공의 층서와 고환경)

  • Yun, Hye-Su;Byun, Hyun-Suk;Oh, Jin-Yong;Park, Myong-Ho;Lee, Min-Woo
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.407-429
    • /
    • 2012
  • There has been much debates on the geologic age of the sediments of the Domi Basin, since age results varied after research methods and fossil groups. This study carried out palynological analysis and seismic interpretation to establish a stratigraphy and environmental reconstruction mainly based on fossil dinoflagellates and Seismic data from the Domi-1 and Sora-1 wells. The dinocyst assemblages found enabled zonation of the well sediment sequence resulting in 4 ecozones. Index fossils among dinocysts and palynomorphic substances indicate geologic age of the well ranges from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner-neritic marine. The fossil association also suggests strong relationship to Japanese Tertiary basins in Kyushu area in terms of stratigraphy and basin developmental history.

Large-scale 3D SSI Analysis using KIESSI-3D Program (KIESSI-3D 프로그램을 이용한 대형 3차원 SSI 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • The soil-structure interaction(SSI) effect should be considered to accurately assess the seismic response of structure constructed on soft soil site other than the hard bedrock. Recently, the demand of SSI analysis has increased due to strengthening of the regulatory guidelines of nuclear power plant such as the USNRC SRP 3.7.2. In this study an accuracy and running time of the KIESSI-3D program for large-scale 3D SSI analysis were investigated. The seismic SSI analysis using the KIESSI-3D program was performed for several examples of large-scale three-dimensional soil-structure interaction system. The analysis results were compared with those of the ACS/SASSI program. Good agreements in transfer functions at selected locations showd that KIESSI-3D yields accurate solution for large-scale SSI problem. Moreover, it was found that running speed of the KIESSI-3D for large-scale 3D SSI analysis is much faster than that of the ACS/SASSI about 30~2000 times.

Seismic Stratigraphy and Depositional History of Holocene Transgressive Deposits in the Southeastern Continental Shelf, Korea (한국 남동해역 홀로세 해침퇴적층의 탄성파층서 및 퇴적역사)

  • Yoo, Dong-Geun;Kim, Seong-Pil;Lee, Chi-Won;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.4
    • /
    • pp.303-312
    • /
    • 2011
  • Analysis of high-resolution seismic profiles from the southeastern continental shelf of Korea reveals that the Holocene transgressive deposits consist of five sedimentary units characterized by retrograding or backstepping depositional arrangements. Unit I, forming a linear sediment body along the shelf margin, is an ancient beach/shoreface deposit formed during the early stage of transgression. During the transgression, the paleo-channels were backfilled with fluvial or coastal-plain sediments, forming Unit II as an incised-channel fill deposit. The near-surface sediment was reworked and eroded by shoreface erosion, forming a thin lag of sands (Unit III) on the midshelf. During the middle stage of the transgression, the shoreline may have stabilized at around 70 - 80 m below the present sea level for some period of time to allow the formation of sand ridge systems (Unit IV). Unit V in the inner shelf was deposited in an estuarine environment during the middle to late stage of transgression. Such transgressive stratigraphic architecture is controlled by a function of lateral changes in the balance among rates of relative sea-level rise, sediment input and marine processes at any given time.

A Seismic Refraction Study on the Basement near the Chonbuk Ranch in Gyeongju (탄성파 굴절법을 이용한 경주시 천북목장 부근의 기반암 분포 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.215-226
    • /
    • 2000
  • In order to map the acoustic basement and to locate fracture zones in the Galgok fault, seismic refraction data were acquired near the Chonbuk ranch in Gyeongju. Along three profiles of 72m(Line 1), 72m(Line 2), and 36m(Line 3) long, seismic signals were generated by a 5kg hammer. The refraction data were collected by employing twelve 8 Hz geophones at an interval of 3m and recording time of 192ms at a sampling rate of 0.2ms. The data are interpreted using GRM method. The top layer (Layer 1) is characterized as the velocity of approximately250 m/s and thickness of approximately 2.1m. This layer is regarded as a soil layer. Underneath Layer 1 lies unconsolidated layer (Layer 2) whose refraction velocity is determined to be $1,030{\sim}1,400m/s$. Layer 2 is approximately 4.6m thick and is regarded as a Quaternary gravel layer. The third layer (Layer 3) has the mean refraction velocity of $2,100{\sim}2,200m/s$ and is interpreted to be the acoustic basement. In some parts of Lines 1 and 3, the difference in depth to the top of Layer 2 is greater than 20 cm indicating the possibility of existence of Quaternary faults. Along Line 3 and the eastern part of Line 1, refracted energy from the acoustic basement was not recorded. This may highly indicate that a relatively large scale fault exists under the western part of Line 1.

  • PDF

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data (다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략)

  • Hwang, Jongha;Oh, Ju-Won;Lee, Jinhyung;Min, Dong-Joo;Jung, Heechul;Song, Youngsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.38-49
    • /
    • 2020
  • Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

Geostatistical Integration of Borehole and Geophysical Data for Design of Offshore-foundation (해상기초 설계를 위한 시추조사와 물리탐사 자료의 지구통계학적 통합분석)

  • Kim, Han-Saem;Kim, Min-Gi;Kim, Joon-Young;Kim, Kwang-Lae;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.109-120
    • /
    • 2012
  • In marine site surveys, drilling boreholes are restrictively conducted, while geophysical surveys are used with ease. To overcome the limitations of marine site survey, various site survey data should be collected and analysed by adopting complementary pros and cons. In this study, the integration assessment was established to digitize 2D geo-layer based on the overlapping of a few borehole data to seismic refraction tomography and to determine 3D geo-information based on the kriging for the design of offshore-foundation. And the overlapping method was proposed considering spatial variability of the tomography and separation distance from borehole position to determine the 2D geo-layer. Finally, the integration assessment was applied to offshore wind-turbine site in Jeju-do, and its applicability was verified based on the cross-validation.

A Study on Geology and Sediment Characteristics in Danghang Bay Area, Gyeongnam (경남 당항만 해역의 지질 및 퇴적층 특성에 관한 연구)

  • Kim, Jin-Hoo;Kim, Sung-Bo;Lee, Young-Hyun;Kim, Chan-Soo;Ryu, Choon-Kil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1203-1211
    • /
    • 2010
  • In order to study geology and sediment characteristics in Danghang Bay area, surface geological survey, SBP (sub-bottom profiler) survey, and sediment analysis were conducted. Danghang Bay area has a closing coast surrounded by land, and surface layer are covered by mud and sandy mud. Sedimentary facies of the surface layer consists of Mm and Mms facies. A SBP seismic survey shows that gas bearing sediments might be spread throughout the sediment layers, so that it seems to be hard to find acoustic basement and gas seeps are easily found throughout the survey lines. The gas trapped in the sediments may be related to the high organic contents of the sediment, and the thick mud layer may restrain the gas from releasing.