• Title/Summary/Keyword: Map boundary

Search Result 415, Processing Time 0.023 seconds

Performance Analysis of Matching Cost Functions of Stereo Matching Algorithm for Making 3D Contents (3D 콘텐츠 생성에서의 스테레오 매칭 알고리즘에 대한 매칭 비용 함수 성능 분석)

  • Hong, Gwang-Soo;Jeong, Yeon-Kyu;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • Calculating of matching cost is an important for efficient stereo matching. To investigate the performance of matching process, the concepts of the existing methods are introduced. Also we analyze the performance and merits of them. The simplest matching costs assume constant intensities at matching image locations. We consider matching cost functions which can be distinguished between pixel-based and window-based approaches. The Pixel-based approach includes absolute differences (AD) and sampling-intensitive absolute differences (BT). The window-based approach includes the sum of the absolute differences, the sum of squared differences, the normalized cross-correlation, zero-mean normalized cross-correlation, census transform, and the absolute differences census transform (AD-Census). We evaluate matching cost functions in terms of accuracy and time complexity. In terms of the accuracy, AD-Census method shows the lowest matching error ratio (the best solution). The ZNCC method shows the lowest matching error ratio in non-occlusion and all evaluation part. But it performs high matching error ratio at the discontinuities evaluation part due to blurring effect in the boundary. The pixel-based AD method shows a low complexity in terms of time complexity.

Two-Dimensional Flood Inundation Analysis Resulting from Irrigation Reservoir Failure - Focused on the Real Case with the Minimal Data Set - (농업용 저수지 붕괴에 따른 2차원 홍수범람해석 -계측자료가 부족한 실제사례를 중심으로-)

  • Lee, Jae Young;Kim, Byunghyun;Park, Jun Hyung;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.231-243
    • /
    • 2016
  • This study presents the applicability of two-dimensional (2D) flood inundation model by applying to real irrigation reservoir failure with limited available data. The study area is Sandae Reservoir placed in Gyeongju and downstream area of it and the reservoir was failured by piping in 2013. The breach hydrograph was estimated from one-dimensional (1D) hydrodynamic model and the discharge was employed for upstream boundary of 2D flood inundation model. Topography of study area was generated by integrating digital contour map and satellite data, and Cartesian grids with 3m resolution to consider geometry of building, road and public stadium were used for 2D flood inundation analysis. The model validation was carried out by comparing predictions with field survey data including reservoir breach outflow, flood extent, flood height and arrival time, and identifying rational ranges with allowed error. In addition, the applicability of 2D model is examined using different simulation conditions involving grid size, building and roughness coefficient. This study is expected to contributed to analysis of irrigation reservoirs were at risk of a failure and setting up Emergency Action Plan (EAP) against irrigation reservoir failure.

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

A Study of GIS-based Estimation of Pollutant Loads in Accordance with Spatial Landuse Variation - Focussing on Wangsook Watershed - (토지이용의 공간적 다양성에 따른 GIS 기반 오염부하 산정에 관한 연구 - 왕숙천 유역을 중심으로 -)

  • Kim, Kyoung-Soon;Kim, Kye-Hyun;Kwon, Oh-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.305-315
    • /
    • 2005
  • The scheme to classify pollution sources in Korean TMDL planning has been pointed out too much complex to implement practically because of requiring a wide range of items to be collected from a field. Within a deficient situation to collect field data, the mathematical scheme that focuses only on counting an uniform area ratio of the different land uses to estimate of pollutant loads from individual sub-catchments has been used without taking into account of the spatial characteristics of major land uses as well as the locations of pollution sources in each sub-catchment. It would cause to significant level of errors to estimate the pollution loads. Therefore, this study proposes a renovated scheme that can be adopted more easily to classify pollution sources in the watershed and reduce the estimation errors in the spatial distribution of pollution sources by introducing a spatial analysis based on digital land cover maps. In order to estimate a unit area to calculate the uniform pollution load, the pollution response unit area that is locating spatially at the same place and having same land use is identified through the application of GIS overlay technique. Unlikely existing conventional method to calculate the pollution load based on equal distribution of pollutants for each administrative boundary, it is assumed that the pollution load from household and livestock sources are generated and washed off from only residential areas. While, pollution from business population comes from commercial area and industrial load from wastewater discharge facilities are from industrial areas. From comparison of the calculated results from the existing the method and the proposed one, it is found that although the estimation of pollution load from sub-catchment in the case of the existing conventional method application results in negligible difference in total pollution amounts from the whole area of Wangsook watershed as a study area, significant difference of pollution load among sub-catchment in which pollution response unit areas are diverse, however, appears in the case of the application of the renovated scheme.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Area Changes in the Administrative Boundary Map of Korea by National Geodetic Reference Frames (세계측지계 전환에 따른 우리나라 행정구역도상 면적 변화)

  • Bae, Tae-Suk;Kim, Jeong-Hee;Yoon, Jong-Seong;Jeong, Jae-Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.241-247
    • /
    • 2012
  • The national geodetic reference frame of Korea switched to the International Terrestrial Reference Frame (ITRF) in 2003. In order to study the land area changes, we calculated the entire land area of Korea using the administrative boundaries of census data provided by Statistics Korea. The standard transformation procedure by the National Geographic Information Institute (NGII) was followed. The Transverse Mercator (TM) projected coordinates were transformed into the GRS80-based world geodetic reference frame, and the ellipsoidal and the projected areas were calculated. The provinces that range over two projection origins were divided into two polygons and projected using appropriate origins. After the transformation, all boundaries were shifted in the northwestern direction, resulting in a decreased area of $1.36km^2$ (about 0.0013%) on the projected plane. Moving the boundaries into a high latitude area cancels out the effect of the enlarged ellipsoid. In addition, the rate of change shows that a higher-latitude province is more sensitive to the shift of the boundaries. The data by Statistics Korea is significantly different from those of the Ministry of Land, Transport and Maritime Affairs (MLTM), thus it is urgently recommended that the data are integrated and unified.

Development of Species Distribution Models and Evaluation of Species Richness in Jirisan region (지리산 지역의 생물종 분포모형 구축 및 종풍부도 평가)

  • Kwon, Hyuk Soo;Seo, Chang Wan;Park, Chong Hwa
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2012
  • Increasing concern about biodiversity has lead to a rise in demand on the spatial assessment of biological resources such as biodiversity assessment, protected area selection, habitat management and restoration in Korea. The purpose of this study is to create species richness map through data collection and modeling techniques for wildlife habitat assessment. The GAM (Generalized Additive Model) is easy to interpret and shows better relationship between environmental variables and a response variable than an existing overlap analysis and GLM (Generalized Linear Model). The study area delineated by a large watershed contains Jirisan national park, Mt. Baekun and Sumjin river with three kinds of protected areas (a national park, a landscape ecology protected area and an otter protected area). We collected the presence-absence data for wildlife (mammals and birds) using a stratified random sampling based on a land cover in the study area and implemented natural and socio-environmental data affecting wildlife habitats. After doing a habitat use analysis and specifying significant factors for each species, we built habitat suitability models using a presence-absence model and created habitat suitability maps for each species. Biodiversity maps were generated by taxa and all species using habitat suitability maps. Significant factors affecting each species habitat were different according to their habitat selection. Although some species like a water deer or a great tit were distributed at the low elevation, most potential habitats for mammals and birds were found at the edge of a national park boundary or near a forest around the medium elevation of a mountain range. This study will be used for a basis on biodiversity assessment and proected area selection carried out by Ministry of Environment.

Geologic Structure Analysis from the Integration of Magnetotelluric and Gravity Models at Hwasan Caldera (화산칼데라 지역 중력 및 자기지전류 탐사 자료의 복합해석을 통한 지질구조 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kim, Jung-Ho;Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-26
    • /
    • 2008
  • A multi-geophysical surveys were carried out at Hwasan caldera which is located in Euisung Sub-basin. In order to overcome the limitation of the previous studies, dense gravity data and magnetotelluric (MT) data were obtained and integrated. In this study, the independent inversion models from gravity and MT method were integrated using a correlation and classification approaches to map geologic structure. The results of integration analysis indicated followings; 1) pyroclastic rocks around the central area of Hwasan caldera have lower density and resistivity when compared with those of neighborhood regions and are extended to around 1 km in depth, 2) the high resistivity and density intrusive igneous rocks are imaged around the ring fault boundary, and 3) the basement structure, which has low resistivity and high density, 5 km deep inferred by integration analysis. Also, for integration analysis, we suggested Structure Index method. This method is analyzed using Type Angle and Type Intensity, which are calculated by the spatial correlation of the physical properties. In this study, we can perform the integration analysis effectively using Structure Index method.

  • PDF

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

A Data Transformation Method for Visualizing the Statistical Information based on the Grid (격자 기반의 통계정보 표현을 위한 데이터 변환 방법)

  • Kim, Munsu;Lee, Jiyeong
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.31-40
    • /
    • 2015
  • The purpose of this paper is to propose a data transformation method for visualizing the statistical information based on the grid system which has regular shape and size. Grid is better solution than administrator boundary or census block to check the distribution of the statistical information and be able to use as a spatial unit on the map flexibly. On the other hand, we need the additional process to convert the various statistical information to grid if we use the current method which is areal interpolation. Therefore, this paper proposes the 3 steps to convert the various statistical information to grid. 1)Geocoding the statistical information, 2)Converting the spatial information through the defining the spatial relationship, 3)Attribute transformation considering the data scale measurement. This method applies to the population density of Seoul to convert to the grid. Especially, spatial autocorrelation is performed to check the consistency of grid display if the reference data is different for same statistic information. As a result, both distribution of grid are similar to each other when the population density data which is represented by census block and building is converted to grid. Through the result of implementation, it is demonstrated to be able to perform the consistent data conversion based on the proposed method.