• Title/Summary/Keyword: Map Array

Search Result 149, Processing Time 0.031 seconds

Precision shape modeling by z-map model

  • Park, Jung-Whan;Chung, Yun-Chan;Choi, Byoung-Kyn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2002
  • The Z-map is a special farm of discrete non-parametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[ij]. While the z-map is the simplest farm of representing sculptured surfaces and is the most versatile scheme for modeling non-parametric objects, its practical application in industry (eg, tool-path generation) has aroused much controversy over its weaknesses, namely its inaccuracy, singularity (eg, vertical wall), and some excessive storage needs. Much research or the application of the z-map can be found in various articles, however, research on the systematic analysis of sculptured surface shape representation via the z-map model is rather rare. Presented in this paper are the following: shape modeling power of the simple z-map model, exact (within tolerance) z-map representation of sculptured surfaces which have some feature-shapes such as vertical-walls and real sharp-edges by adopting some complementary z-map models, and some application examples.

Genomic Alterations in Korean Laryngeal Squamous Cell Carcinoma: Array-Comparative Genomic Hybridization (한국인 후두 편평 상피 세포암의 유전체 이상분석: Array 비교 유전체 보합법)

  • Cho, Yoon-Hee;Park, Soo-Yeun;Lee, Dong-Wook;Kim, Han-Su;Lee, Ja-Hyun;Park, Hae-Sang;Chung, Sung-Min
    • Korean Journal of Head & Neck Oncology
    • /
    • v.24 no.2
    • /
    • pp.155-161
    • /
    • 2008
  • Head and neck squamous cell carcinoma(HNSCC) still has poor outcome, and laryngeal cancer is the most frequent subtype of HNSCC. Therefore, there is a need to develop novel treatments to improve the outcome of patients with HNSCC. It is critical to gain further understanding on the molecular and chromosomal alteration of HNSCC to identify novel therapeutic targets but genetic etiology of squamous cell carcinoma of the larynx is so complex that target genes have not yet been clearly identified. Array based CGH(array-CGH) allows investigation of general changes in target oncogenes and tumor suppressor genes, which should, in turn, lead to a better understanding of the cancer process. In this study, We used genomic wide array-CGH in tissue specimens to map genomic alterations found in laryngeal squamous cell carcinomas. As results, gains of MAP2, EPHA3, EVI1, LOC389174, NAALADL2, USP47, CTDP1, MASP1, AHRR, and KCNQ5, with losses of SRRM1L, ANKRD19, FLJ39303, ZNF141, DSCAM, GPR27, PROK2, ARPP-21, and B3GAT1 were observed frequently in laryngeal squamous cell carcinoma tissue specimens. These data about the patterns of genomic alterations could be a basic step for understanding more detailed genetic events in the carcinogenesis and also provide information for diagnosis and treatment in laryngeal squamous cell carcinoma. The high resolution of array-CGH combined with human genome database would give a chance to find out possible target genes which were gained or lost clones.

Light-Microscopy-Based Sparse Neural Circuit Reconstruction: Array Tomography and Other Methods

  • Rah, Jong-Cheol
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.176-178
    • /
    • 2016
  • Efficient neural circuit reconstruction requires sufficient lateral and axial resolution to resolve individual synapses and map a large enough volume of brain tissue to reveal the molecular identity and origin of these synapses. Sparse circuit reconstruction using array tomography meets many of these requirements but also has some limitations. In this minireview, the advantages and disadvantages of applicable imaging techniques will be discussed.

Z-map Model Using Triangular Grids (삼각 격자를 이용한 Z-map 모델)

  • Park, Pae-Yong;Ahn, Jeong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.824-828
    • /
    • 2000
  • Prior to the downloading of the NC codes to a machining center, the NC tool-path can be verified in a computer. The Z-map is one of the tools for the verification of NC tool-path. The Z-map is a two dimensional array in which the height values of the Z-axis direction vectors are stored. The Z-axis direction vectors are arranged in a rectangular grid pattern on the XY plane. The accuracy of the simulation comes from the grid interval. In the rectangular Z-map, the distances between the grid points are different. The distance in diagonal direction is larger than those in X or Y axis directions. For the rendering of the Z-map, a rectangular grid is divided into two triangular facets. Depending on the selection of a diagonal, there are two different cases. In this paper, triangular Z-map, in which the Z-axis direction vectors are arranged in a triangular grid pattern on XY plane, is proposed. In the triangular Z-map, the distances between grid points are equal. There is no ambiguity to make triangular facets for the rendering.

  • PDF

Evaluation of MR-SENSE Reconstruction by Filtering Effect and Spatial Resolution of the Sensitivity Map for the Simulation-Based Linear Coil Array (선형적 위상배열 코일구조의 시뮬레이션을 통한 민감도지도의 공간 해상도 및 필터링 변화에 따른 MR-SENSE 영상재구성 평가)

  • Lee, D.H.;Hong, C.P.;Han, B.S.;Kim, H.J.;Suh, J.J.;Kim, S.H.;Lee, C.H.;Lee, M.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.245-250
    • /
    • 2011
  • Parallel imaging technique can provide several advantages for a multitude of MRI applications. Especially, in SENSE technique, sensitivity maps were always required in order to determine the reconstruction matrix, therefore, a number of difference approaches using sensitivity information from coils have been demonstrated to improve of image quality. Moreover, many filtering methods were proposed such as adaptive matched filter and nonlinear diffusion technique to optimize the suppression of background noise and to improve of image quality. In this study, we performed SENSE reconstruction using computer simulations to confirm the most suitable method for the feasibility of filtering effect and according to changing order of polynomial fit that were applied on variation of spatial resolution of sensitivity map. The image was obtained at 0.32T(Magfinder II, Genpia, Korea) MRI system using spin-echo pulse sequence(TR/TE = 500/20 ms, FOV = 300 mm, matrix = $128{\times}128$, thickness = 8 mm). For the simulation, obtained image was multiplied with four linear-array coil sensitivities which were formed of 2D-gaussian distribution and the image was complex white gaussian noise was added. Image processing was separated to apply two methods which were polynomial fitting and filtering according to spatial resolution of sensitivity map and each coil image was subsampled corresponding to reduction factor(r-factor) of 2 and 4. The results were compared to mean value of geomety factor(g-factor) and artifact power(AP) according to r-factor 2 and 4. Our results were represented while changing of spatial resolution of sensitivity map and r-factor, polynomial fit methods were represented the better results compared with general filtering methods. Although our result had limitation of computer simulation study instead of applying to experiment and coil geometric array such as linear, our method may be useful for determination of optimal sensitivity map in a linear coil array.

Point-level deep learning approach for 3D acoustic source localization

  • Lee, Soo Young;Chang, Jiho;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.777-783
    • /
    • 2022
  • Even though several deep learning-based methods have been applied in the field of acoustic source localization, the previous works have only been conducted using the two-dimensional representation of the beamforming maps, particularly with the planar array system. While the acoustic sources are more required to be localized in a spherical microphone array system considering that we live and hear in the 3D world, the conventional 2D equirectangular map of the spherical beamforming map is highly vulnerable to the distortion that occurs when the 3D map is projected to the 2D space. In this study, a 3D deep learning approach is proposed to fulfill accurate source localization via distortion-free 3D representation. A target function is first proposed to obtain 3D source distribution maps that can represent multiple sources' positional and strength information. While the proposed target map expands the source localization task into a point-wise prediction task, a PointNet-based deep neural network is developed to precisely estimate the multiple sources' positions and strength information. While the proposed model's localization performance is evaluated, it is shown that the proposed method can achieve improved localization results from both quantitative and qualitative perspectives.

Control of Polarity by Magnetic Array Table in Magnetic Abrasive Polishing Process (자기연마가공에서 마그네틱 어레이 테이블에 의한 극성 제어)

  • Gang, Han-Sung;Kim, Tae-Hui;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1643-1648
    • /
    • 2010
  • It is very difficult to polish non-magnetic materials by the magnetic abrasive polishing (MAP) process because magnetic force is required for MAP, but the magnetic force for non.magnetic materials is low. In this study, we aimed to develop a magnetic array table and control the magnetic polarity such that the magnetic force can be increased for the MAP of non-magnetic materials. The newly designed magnetic array table has 32 electro magnets, and the magnetic polarity of each electro-magnet can be easily controlled by changing the electric polarity. It was analytically verified that the magnetic flux density of non-magnetic materials can be varied by varying the applied magnetic polarity.

A Comparison Study of Volumetric Modulated Arc Therapy Quality Assurances Using Portal Dosimetry and MapCHECK 2

  • Jin, Hosang;Jesseph, Fredrick B.;Ahmad, Salahuddin
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.65-71
    • /
    • 2014
  • A Varian Portal Dosimetry system was compared to an isocentrically mounted MapCHECK 2 diode array for volumetric modulated arc therapy (VMAT) QA. A Varian TrueBeam STx with an aS-1000 digital imaging panel was used to acquire VMAT QA images for 13 plans using four photon energies (6, 8, 10 and 15 MV). The EPID-based QA images were compared to the Portal Dose Image Prediction calculated in the Varian Eclipse treatment planning system (TPS). An isocentrically mounted Sun Nuclear MapCHECK 2 diode array with 5 cm water-equivalent buildup was also used for the VMAT QAs and the measurements were compared to a composite dose plane from the Eclipse TPS. A ${\gamma}$ test was implemented in the Sun Nuclear Patient software with 10% threshold and absolute comparison at 1%/1 mm (dose difference/distance-to-agreement), 2%/2 mm, and 3%/3 mm criteria for both QA methods. The two-tailed paired Student's t-test was employed to analyze the statistical significance at 95% confidence level. The average ${\gamma}$ passing rates were greater than 95% at 3%/3 mm using both methods for all four energies. The differences in the average passing rates between the two methods were within 1.7% and 1.6% of each other when analyzed at 2%/2 mm and 3%/3 mm, respectively. The EPID passing rates were somewhat better than the MapCHECK 2 when analyzed at 1%/1 mm; the difference was lower for 8 MV and 10 MV. However, the differences were not statistically significant for all criteria and energies (p-values >0.05). The EPID-based QA showed large off-axis over-response and dependence of ${\gamma}$ passing rate on energy, while the MapCHECK 2 was susceptible to the MLC tongue-and-groove effect. The two fluence-based QA techniques can be an alternative tool of VMAT QA to each other, if the limitations of each QA method (mechanical sag, detector response, and detector alignment) are carefully considered.

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.