• Title/Summary/Keyword: Manufacturing Training

Search Result 365, Processing Time 0.019 seconds

A Study on the Competencies of Automotive Professional Engineers in Korea (자동차 신제품개발 관련 차량기술사의 전문적 업무역량 분석)

  • Kim, Joo-Young;Lim, Se-Yung
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.192-217
    • /
    • 2008
  • This paper investigated the perceived criticalities and patterns of Korean Professional Engineer's competency regarding the working activities of automative product development, manufacturing, etc by using questionnaires responded to the survey which were applied to the automotive professors, experts and professional engineers (vocational parties) by e/mail, etc. This research investigated the following questions: First, what are the characteristic patterns, relevancy and perceived criticalities of Korean Professional Engineer's competencies? Second, What are the ranked priority of the Korean Professional Engineers' competencies? Are there any differency for each item, sub group of job, intelectual criterior of the competencies between relevancy and perceived criticalities according to the types of vocational parties, etc.? Accoring to the results; first, Professor group showed highest points among 3 groups per each item of the competencies by vocational parties Second, Chassis design group ranked top position among the 8 sub groups by vocational parties and, third, Problem Solving Knowledge ranked highest points than any others. Korean Professional Engineers are found to be positioned as key members, leaders and managers on surveying market, product planning, designing product & components, developing component parts, establishing shop with production equipment, managing quality control & material handling, organizing relevant meetings, developing human resources by training and learning, to back up finance with law matters, cooperating with concerned parties to achieve organizational goals, and to coordinate projects. etc, identifying ethical issues and business skills in order to survive and win to be competitive in various kinds of the automotive industry battle fields.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF

Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images (딥러닝을 활용한 고대 수막새 이미지 분류 검토)

  • KIM Younghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.24-35
    • /
    • 2024
  • Recently, research using deep learning technologies such as artificial intelligence, convolutional neural networks, etc. has been actively conducted in various fields including healthcare, manufacturing, autonomous driving, and security, and is having a significant influence on society. In line with this trend, the present study attempted to apply deep learning to the classification of archaeological artifacts, specifically ancient Korean roof-end tiles. Using 100 images of roof-end tiles from each of the Goguryeo, Baekje, and Silla dynasties, for a total of 300 base images, a dataset was formed and expanded to 1,200 images using data augmentation techniques. After building a model using transfer learning from the pre-trained EfficientNetB0 model and conducting five-fold cross-validation, an average training accuracy of 98.06% and validation accuracy of 97.08% were achieved. Furthermore, when model performance was evaluated with a test dataset of 240 images, it could classify the roof-end tile images from the three dynasties with a minimum accuracy of 91%. In particular, with a learning rate of 0.0001, the model exhibited the highest performance, with accuracy of 92.92%, precision of 92.96%, recall of 92.92%, and F1 score of 92.93%. This optimal result was obtained by preventing overfitting and underfitting issues using various learning rate settings and finding the optimal hyperparameters. The study's findings confirm the potential for applying deep learning technologies to the classification of Korean archaeological materials, which is significant. Additionally, it was confirmed that the existing ImageNet dataset and parameters could be positively applied to the analysis of archaeological data. This approach could lead to the creation of various models for future archaeological database accumulation, the use of artifacts in museums, and classification and organization of artifacts.

A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation (IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로)

  • Kang, Ryeo-Eun;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.169-196
    • /
    • 2017
  • The fourth industrial revolution represents a revolutionary change in the business environment and its ecosystem, which is a fusion of Information Technology (IT) and other industries. In line with these recent changes, the Ministry of Employment and Labor of South Korea announced 'the Fourth Industrial Revolution Leader Training Program,' which includes five key support areas such as (1) smart manufacturing, (2) Internet of Things (IoT), (3) big data including Artificial Intelligence (AI), (4) information security, and (5) bio innovation. Based on this program, we can get a glimpse of the South Korean government's efforts and willingness to emit leading human resource with advanced IT knowledge in various fusion technology-related and newly emerging industries. On the other hand, in order to nurture excellent IT manpower in preparation for the fourth industrial revolution, the role of educational institutions capable of providing high quality IT education services is most of importance. However, these days, most IT educational institutions have had difficulties in providing customized IT education services that meet the needs of consumers (i.e., learners), without breaking away from the traditional framework of providing supplier-oriented education services. From previous studies, it has been found that the provision of customized education services centered on learners leads to high satisfaction of learners, and that higher satisfaction increases not only task performance and the possibility of business application but also learners' recommendation intention. However, since research has not yet been conducted in a comprehensive way that consider both antecedent and consequent factors of the learner's satisfaction, more empirical research on this is highly desirable. With the advent of the fourth industrial revolution, a rising interest in various convergence technologies utilizing information technology (IT) has brought with the growing realization of the important role played by IT-related education services. However, research on the role of IT education service quality in the context of IT education is relatively scarce in spite of the fact that research on general education service quality and satisfaction has been actively conducted in various contexts. In this study, therefore, the five dimensions of IT education service quality (i.e., tangibles, reliability, responsiveness, assurance, and empathy) are derived from the context of IT education, based on the SERVPERF model and related previous studies. In addition, the effects of these detailed IT education service quality factors on learners' educational satisfaction and their work application/recommendation intentions are examined. Furthermore, the moderating roles of learner position (i.e., practitioner group vs. manager group) and participation motivation (i.e., voluntary participation vs. involuntary participation) in relationships between IT education service quality factors and learners' educational satisfaction, work application intention, and recommendation intention are also investigated. In an analysis using the structural equation model (SEM) technique based on a questionnaire given to 203 participants of IT education programs in an 'M' IT educational institution in Seoul, South Korea, tangibles, reliability, and assurance were found to have a significant effect on educational satisfaction. This educational satisfaction was found to have a significant effect on both work application intention and recommendation intention. Moreover, it was discovered that learner position and participation motivation have a partial moderating impact on the relationship between IT education service quality factors and educational satisfaction. This study holds academic implications in that it is one of the first studies to apply the SERVPERF model (rather than the SERVQUAL model, which has been widely adopted by prior studies) is to demonstrate the influence of IT education service quality on learners' educational satisfaction, work application intention, and recommendation intention in an IT education environment. The results of this study are expected to provide practical guidance for IT education service providers who wish to enhance learners' educational satisfaction and service management efficiency.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.