• Title/Summary/Keyword: Manufacturing Resources

Search Result 969, Processing Time 0.028 seconds

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.

Analysis of environmental benefit of wood waste recycling processes (폐목재 자원화 방법 환경편익 분석)

  • Kim, Mi Hyung;Hong, Soo Youl;Phae, Chae Gun;Koo, Ja Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • Wood wastes could be renewable resources by recycling as particleboard manufacturing or energy production. Particle board is the most common item of wood waste recycling and energy production from wood wastes has highlighted for energy recovery to reduce greenhouse gas generation in recent years. The aim of this study was to evaluate the environmental benefits of the processes for particle board manufacturing and energy production. The functional unit was one ton of wood wastes and the environmental impact was analyzed by life cycle assessment methodology. The result was that 112kg of carbon dioxide equivalent was produced from particle board manufacturing process and 382kg of carbon dioxide equivalent was produced from combined heat and power generation process. The concept of temporary biomass carbon storage was to applied to this study.

Renewable and Sustainable Resource Derived Carbon Neutral Adhesive Materials (재생 및 지속사용 가능 자원 유래 탄소 중립형 접착소재)

  • Kim, Baekjin;Kim, Sangyong;Cho, Jin Ku;Lee, Sang-Hyeup;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • The extensive use of fossil resources over the past century resulted in dwindling supply and surging price of oil and it is strongly suspected that irreversible global climate change might be due to carbon dioxide emitted from combustion of fossil carbons. With this regard, much attention is recently paid to renewable and sustainable resources as alternatives to petroleum. In this review, we considered a range of efforts to replace petroleum-derived chemicals, particularly adhesive materials with renewable and sustainable plant-based biomass feedstock.

Virtual Manufacturing for an Automotive Company(VII) : Construction and Application of a Virtual Press Shop (자동차 가상생산 기술 적용(VII) : 프레스 디지털 가상공장의 구축과 활용)

  • Kuk, Seung-Ho;Lee, Sang-Seok;So, Soon-Il;Noh, Sang-Do;Kim, H.S.;Shim, K.B.;Kim, J.Y.
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.322-332
    • /
    • 2008
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital model representing the physical and logical schema and the behavior of real manufacturing system, and it includes product, resources, processes and plant. For successful applications of this technology, a digital virtual factory as a well-designed and integrated environment is essential. In this research, we constructed a sophisticated digital virtual factory of a Korean automotive company's press shop. For efficient constructions of a digital virtual factory useful to kinematic simulations and visualizations, we analyzed entire business process and detailed activities of press engineering. Also, we evaluated geometries, structures, characteristics and motions of a plant and machines in press shop. The geometric model and related data of a virtual press shop are built and managed by a modeling standard defined in this paper. The virtual manufacturing simulation of press machines is conducted to evaluate kinematic motions, cycle time and locations of components using geometric models and related data. It's for interference checks and productivity improvements. We expect that this virtual press shop helps us to achieve great savings in time and cost in many manufacturing preparation activities in the new car development process of automotive companies.

The Critical Success Factors of Six Sigma in China Manufacturing Industry

  • Yi-Zhong, Ma;Gang, Yue;Li-Lin, Wang;Ree, Sang-Bok
    • International Journal of Quality Innovation
    • /
    • v.9 no.2
    • /
    • pp.39-56
    • /
    • 2008
  • Six Sigma has been one of main quality improvement approaches since Motorola first invented Six Sigma in 1987. Many scholars and consult experts have discussed the critical success factors of implementing Six Sigma management, but most of them are based on related theories or qualitative analyses. In the paper, we first review critical success factor of Six Sigma status quo based on literature. Then we design the questionnaire and survey China manufacturing enterprises that have introduced Six Sigma management. And finally, we analyze the critical success factors of China manufacturing industry implementing Six Sigma management by using structural equation model and find that leadership and Six Sigma strategy, focus on market and customer, evaluation and motivation, selecting, managing and implementing Six Sigma projects are four critical success factors of China manufacturing enterprises implementing Six Sigma management. At the same time, the paper also presents the relationships between the critical success factors. The results are of important role in China manufacturing industry locating resources, eliminating waste and improving Six Sigma performance.

A Study on analysis framework development for yield improvement in discrete manufacturing (이산 제조 공정에서의 수율 향상을 위한 분석 프레임워크의 개발에 관한 연구)

  • Song, Chi-Wook;Roh, Geum-Jong;Park, Dong-Jin
    • The Journal of Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-121
    • /
    • 2017
  • Purpose It is a major goal to improve the product yields during production operations in the manufacturing industry. Therefore, factory is trying to keep the good quality materials and proper production resources, also find the proper condition of facilities and manufacturing environment for yields improvement. Design/methodology/approach We propose the hybrid framework to analyze to dataset extracted from MES. Those data is about the alarm information generated from equipment, both measurement and equipment process value from production and cycle/pitch time measured from production data these covered products during production. We adapt a data warehousing techniques for organizing dataset, a logistic regression for finding out the significant factors, and a association analysis for drawing the rules which affect the product yields. And then we validate the framework by applying the real data generated from the discrete process in secondary cell battery manufacturing. Findings This paper deals with challenges to apply the full potential of modeling and simulation within CPPS(Cyber-Physical Production System) and Smart Factory implementation. The framework is being applied in one of the most advanced and complex industrial sectors like semiconductor, display, and automotive industry.

Effect of Oxidation Behavior of (Nd,Dy)-Fe-B Magnet on Heavy Rare Earth Extraction Process

  • Park, Sangmin;Nam, Sun-Woo;Lee, Sang-Hoon;Song, Myung-Suk;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.91-96
    • /
    • 2021
  • Rare earth magnets with excellent magnetic properties are indispensable in the electric device, wind turbine, and e-mobility industries. The demand for the development of eco-friendly recycling techniques has increased to realize sustainable green technology, and the supply of rare earth resources, which are critical for the production of permanent magnets, are limited. Liquid metal extraction (LME), which is a type of pyrometallurgical recycling, is known to selectively extract the metal forms of rare earth elements. Although several studies have been carried out on the formation of intermetallic compounds and oxides, the effect of oxide formation on the extraction efficiency in the LME process remains unknown. In this study, microstructural and phase analyses are conducted to confirm the oxidation behavior of magnets pulverized by a jaw crusher. The LME process is performed with pulverized scrap, and extraction percentages are calculated to confirm the effect of the oxide phases on the extraction of Dy during the reaction. During the L ME process, Nd is completely extracted after 6 h, while Dy remains as Dy2Fe17 and Dy-oxide. Because the decomposition rate of Dy2Fe17 is faster than the reduction rate of Dy-oxide, the importance of controlling Dy-oxide on Dy extraction is confirmed.

Estimation of Representative Mechanical Property of Porous Electrode for Secondary Batteries with Homogenization Method (균질화 기법을 이용하여 기공이 있는 이차전지 극판의 대표 기계 물성 도출을 위한 연구)

  • Pyo, Changmin;Kim, Jaewoong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.85-91
    • /
    • 2022
  • The demand for electric vehicles has increased because of environmental regulations. The lithium-ion battery, the most widely used type of battery in electric vehicles, is composed of a cathode, an anode, and an electrolyte. It is manufactured according to the pole plate, assembly, and formation processes. To improve battery performance and increase manufacturing efficiency, the manufacturing process must be optimized. To do so, simulation can be used to reduce wasted resources and time, and a finite-element method can be utilized. For high simulation quality, it is essential to reflect the material properties of the electrode by considering the pores. However, the material properties of electrodes are difficult to derive through measurement. In this study, the representative volume element method, which is a homogenization method, was applied to estimate the representative material properties of the electrode considering the pores. The representative volume element method assumes that the strain energy before and after the conversion into a representative volume is conserved. The method can be converted into one representative property, even when nonhomogeneous materials are mixed in a unit volume. In this study, the material properties of the electrode considering the pores were derived. The results should be helpful in optimizing the electrode manufacturing process and related element technologies.

Biohydrogen Production from Sugar Manufacturing Wastewater and Analysis of Microbial Diversity (제당폐수를 이용한 수소생산과 미생물의 군집해석)

  • Lee, Heesu;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.41-51
    • /
    • 2012
  • Biohydrogen production and analysis of microbial community were attempted from the sugar manufacturing wastewater with anaerobic fermentation process. Addtion of nutrients ($N{\cdot}P$) into sugar manufacturing wastewater stimulates hydrogen production from 9.53 to $26.67m{\ell}$ $H_2/g$ COD. Butyric acid, acetic acid, lactic acid, and propionic acid were detected in the sample of the anaerobic fermentation process. Butyric acid/Acetic acid(B/A) ratio was increased 0.50 to 0.92 according to the nutrients addtion into the wastewater. Microbial community was analyzed as Clostridium sp. in the phylum of Firmicutes and Klebsiella sp., Erwinia sp., and enterobacter sp. of the class of $\gamma$-Proteobacteria. As the improvement of hydrogen production, Erwinia sp. was decreased and Klebsiella sp. was increased.

Manufacturing Techniques of Tile in Anchang-ri Historical Site of Wonju-city, Korea (안창리 기와의 제작기법)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Shin, Suk-Jeong;Park, Jun-Beom
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.2
    • /
    • pp.13-33
    • /
    • 2009
  • Mineralogical analysis with petrographic microscope and XRD was carried out to verify manufacturing technique of the tiles(9 samples) and kiln wall materials(5 samples) from the Anchang-ri history site in Wonju county. One of the results we found is such that during the tile manufacturing process fine tile fragments or wall materials might be added instead of chamottes to maintain tile pattern. Abandoned tiles or wall materials were recycled repeatedly, which may be supported by the recycled chamottes that made from iron-rich fine aggregates or disposed kiln wall materials in many samples analyzed. The tiles and wall materials are divided into 3 types, including low temperature type (below $800^{\circ}C$), intermediate temperature type ($800-930^{\circ}C$) and high temperature type ($930-1470^{\circ}C$) as a function of firing temperature which deduced by mineral assemblages identified under petrographic microscope and by XRD composition. Both Kiln A8 of Choseon Dynasty and wall material AW5 were burned at the highest temperature among the all analyzed samples.

  • PDF