• Title/Summary/Keyword: Manufacturing Line

Search Result 1,246, Processing Time 0.028 seconds

Development of a Transmission Error Measurement System and Its Adaptation to a Manufacturing Line (기어 전달오차 측정 시스템의 개발 및 라인 적용에 관한 연구)

  • Lee, Hyun Ku;Lee, Sang Hwa;Ku, Han Il;Yoo, Dong Kyu;Won, Kwang Min;Lee, Tae Hwi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.420-427
    • /
    • 2016
  • Diverse research on gearing systems have been made to resolve gear NVH problems for many decades, and transmission error (T.E.) has been identified as one of the main sources generating gear noises. While gear profiles and amounts of tooth modifications have influences on gear noise in the design aspect, it is found that bad manufacturing conditions such as burrs, bumps and damage, which result in improper gear operating conditions, produce gear noise with respect to manufacturing process. In this paper, T.E. measurement system was introduced to examine the gears damaged or improperly manufactured, while they are assembled, by comparing T.E. values and various gear conditions with theoretical ones. This T.E. measurement system, following grinding machining process, has been installed in a manufacturing line in 2014, and it results that the transmission rework to resolve manufacturing problems is not needed at the end of line.

Discrete event systems modeling and scheduling of flexible manufacturing systems

  • Tamura, Hiroyuki;Hatono, Itsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1564-1569
    • /
    • 1991
  • In this paper we describe Flexible Manufacturing Systems (FMS) using Petri nets, since Petri nets provide a powerful tool for modeling dynamical behavior of discrete concurrent processes. We deal with off-Line and on-Line rule-based scheduling of FMS. The role of the rule-base is to generate appropriate priority rule for resolving conflicts, that is, for selecting one of enabled transitions to be fired in a conflict set of the Petri nets. This corresponds to select a part type to be processed in the FMS. Towards developing more Intelligent Manufacturing Systems (IMS) we propose a conceptual framework of a futuristic intelligent scheduling system.

  • PDF

Auto-Generation of Diagnosis Program of PLC-based Automobile Body Assembly Line for Safety Monitoring (PLC기반 차체조립라인의 안전감시를 위한 진단프로그램 생성에 관한 연구)

  • Park, Chang-Mok
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • In an automated industry PLC plays a central role to control the manufacturing system. Therefore, fault free operation of PLC controlled manufacturing system is essential in order to maximize a firm's productivity. On the contrary, distributed nature of manufacturing system and growing complexity of the PLC programs presented a challenging task of designing a rapid fault finding system for an uninterrupted process operation. Hence, designing an intelligent monitoring, and diagnosis system is needed for smooth functioning of the operation process. In this paper, we propose a method to continuously acquire a stream of PLC signal data from the normal operational PLC-based manufacturing system and to generate diagnosis model from the observed PLC signal data. Consequently, the generated diagnosis model is used for distinguish the possible abnormalities of manufacturing system. To verify the proposed method, we provided a suitable case study of an assembly line.

A Simulation Study on the Application of Cellular Manufacturing System in the Automated Welding Line Producing Excavator-parts (굴삭기 부품 용접 자동화라인의 셀생산방식 적용을 위한 시뮬레이션 연구)

  • Kim, Hye Jeong;Lee, Seung Woo;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Mixed model production system means that various products are manufactured alternately in a line, and it has become a popular system in the era of multi-product small-quantity production. However, in the mixed model production system using flow line, the unbalance among stations is not inevitable because the workloads of stations cannot be the same. Thus, flow line system has been replaced to cellular manufacturing system for reducing the loss of waiting due to the unbalance of stations. In this paper, we introduce the simulation case study of an automated welding line which produces the parts of excavator. The factory has considered replacing the mixed model flow line to the cellular manufacturing system based on FMC concept. The increase of production quantity is estimated about 26.7%, and the lead time is reduced more than 55%. Furthermore sensitivity analyses are conducted considering the changes of product-mix.

Development of a Neural Network for Optimization and Its Application to Assembly Line Balancing

  • Hong, Dae-Sun;Ahn, Byoung-Jae;Shin, Joong-Ho;Chung, Won-Jee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.587-591
    • /
    • 2003
  • This study develops a neural network for solving optimization problems. Hopfield network has been used for such problems, but it frequently gives abnormal solutions or non-optimal solutions. Moreover, it takes much time for solving a solution. To overcome such disadvantages, this study adopts a neural network whose output nodes change with a small value at every evolution, and the proposed neural network is applied to solve ALB (Assembly Line Balancing) problems . Given a precedence diagram and a required number of workstations, an ALB problem is solved while achieving even distribution of workload among workstations. Here, the workload variance is used as the index of workload deviation, and is reflected to an energy function. The simulation results show that the proposed neural network yields good results for solving ALB problems with high success rate and fast execution time.

  • PDF

Improved Design of Engine Manufacturing Line Using Simulation (시뮬레이션을 사용한 엔진생산라인의 설계개선)

  • 오필범;임석철;한형상
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • When a new manufacturing line is constructed, its production capacity can be substantially affected in its design stage. Computer simulation often provides better design by evaluating feasible alternatives. In this paper we study an automobile engine manufacturing line which is under construction. Three alternatives are considered in the design; (1) to use machining tools of longer life; (2) to reassign the buffer space to each sequential processes while maintaining the same total buffer length; and (3) to reduce the machine repair time to 30 minutes using TPM and maintenance team. Simulation results using AutoMod indicates that employing the three alternatives will save about 1.5 million dollars per year.

  • PDF

Digital Manufacturing Strategy & Case study of Automotive General Assembly (자동차 조립 라인의 디지털 생산 구축 사례연구)

  • Choi M.W.;Han S.T.;Seo J.H.;Woo J.H.;Lee C.J.;Choi Y.R.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-209
    • /
    • 2005
  • In this paper, a digital simulation model for an automotive assembly line is constructed by adapting a digital manufacturing methodology. Applied methodology is a simulation for a plant level of the assembly production line. The first significance of this methodology is a validation of the production planning based on various scenarios. The second is pre-verification for the new production plan or production method. The third is a visualization of the production process. Several models were implemented and those models were verified. Then, it was possible to find a most efficient production scenario and production method.

Design of a Vehicle Assembly Line Using PLC Simulation (PLC 시뮬레이션을 이용한 자동차 조립 라인 설계)

  • Lee, Chang-Ho;Wang, Gi-Nam;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.323-329
    • /
    • 2009
  • Auto-makers can only remain competitive by producing high quality vehicles in an efficient way. In designing a production line, one of the most important objectives of digital manufacturing is to verify design errors as early as possible. In terms of the cost and time saving, it is very essential to start the construction of a production line with a proven design which is error-free. Likewise, this paper aims to implement PLC verification using an example. The verification in automobile manufacturing means verifying PLC program, which control automatic devices. In this paper, we built a virtual factory to implement PLC simulation and introduced verification procedure using PLC Studio. Finally, we can prove the availability for the PLC verification.