The low birthrate and the need for national defense reform in Korea drive the Navy to develop efficient human resource planning such as a manpower forecasting model. However, to our knowledge, there is no study exploring the manpower forecasting model for naval ships in Korea. The purpose of this paper is to develop a model for forecasting manpower demand in naval ships. Data for analyses were drawn from 19 ships in the Korean Navy. Results indicate that mission type is significantly related to the number of manpower. Specifically, battleships need the more manpower than the battle support ships. The results also showed that the weight of hull structure-engine and the weight of the weapons system significantly increased the number of manpower. However, the weight of the combat system was not significant. In addition, whereas the automation level of hull structure-engine and the automation level of weapon system was found to be negatively related to the number of manpower, the automation level of combat system was positively related to it. The model developed here contributes to an advanced human resource planning of the Korean Navy. Implications, limitations, and directions for future research are discussed.
The literature has recorded many models dealing with manpower forecasting and planning. The approaches used by the various authors are clearly disparate. This paper presents a taxonomy for manpower planning and forecasting methodologies and classifies the landmark developments in this field. The taxonomical schema is then applied to unify the models in consideration of the methods and the decision factors used for forecasting and/or planning. The taxonomy allows for the most complex model structure containing all the factors considered germane in the existing literature.
4차 산업혁명의 영향으로 해운항만물류산업의 스마트화에 따른 전문인력의 수요를 예측하기 위하여 통계청의 2000년~2020년 기간의 운수업조사 자료와 해양수산부의 한국선원통계연보 2004년~2021년도 자료를 활용하여 추세분석과 시계열 분석을 실시하였다. 해운항만물류산업의 인력 수요 예측에서 추세분석의 선형회귀모형의 타당성이 가장 높은 것으로 평가되어 이를 적용하였다. 자율운항선 해기인력, 원격선박관리인력, 스마트 해운비즈니스 인력, 스마트 항만인력. 스마트 창고인력, 스마트 해운항만물류 서비스 인력의 2021~2035년 기간의 인력 수요를 예측한 결과, 스마트 해운항만물류인력 수요는 2023년 8,953명, 2030년 20,688명, 2035년 26,557명으로 증가하는 것으로 예측되었다. 이 연구는 스마트 해운항만물류 인력수요에 대한 연구가 아직 이루어지지 않은 상태에서 스마트 인력수요를 통계자료에 근거하여 객관적으로 추정함으로써 인력 수요의 예측 가능성을 높이고, 향후 필요 전문인력 양성 방안을 수립하는데 기여할 것으로 기대된다.
이 연구는 최근 건설 프로젝트의 불확실성이 증가하고, 국내 건설 산업이 다변화되는 상황에서 시작되었다 프로젝트의 Pre-Design 단계와 Construction 단계에서 얻을 수 있는 변수들을 도출해냄으로써 적절한 노무량을 예측할 수 있는 모델을 제시하는 데에 이 연구의 목적이 있다. 표준품셈과 같은 기존의 방법으로는 퇴직공제금과 같은비용을 정확하게 산출하는 데에 어려움이 있기 때문에 본 연구에서는 수도권 지역에서 2000년부터 현재까지 공사가 완료 된 공동주택 38곳의 실적자료를 이용한 통계적 방법을 사용하여, 실제 공사에 투입되고 있는 노무량과 공사의 전체적인 개요와의 상관관계를 분석하고, 회귀모델을 제시하였다. 회귀모델의 검증에서는 몇몇의 현장을 제외하고는 결과값이 통계적으로 비교적 유의한 것으로 확인되었다. 이 회귀모델은 기존의 방법보다 퇴직공제금의 적절한 산정에 도움을 줄 수 있을 것으로 기대된다.
Patents often serve as leading indicators of technological change. This patenting activity reflected R&D (Research & Development) of new technology. The purpose of this study is to set up a forecasting model that anticipate the number of domestic patent applications and the number of patents granted relating to R&D inputs (R&D expenditure, R&D manpower) at the level of three industrial sectors in Korea : electrical-electronic, machinery, chemical etc. In this study, forecasting models were used trend extrapolation and a set of regressions. Both Theil's inequality coefficient and MAE(Mean Absolute Error) were utilized to test the precision of predicted value. The patent data and the R&D data were based on Indicators of Industrial Technology data throught 1980 to 1996. The major results obtained in this study are as follows (1) The regression model is more useful for forecasting the trends of the number of patent applications and patents granted than the trend extrapolation method. (2) The variance of Theil's inequality is smaller in patent applications than in patent granted.
The efficiency of fabrication (fab) operation is one of the key factors in order for a semiconductor manufacturing company to stay competitive. Optimization of manpower and forecasting manpower needs in a modern fab is an essential part of the future strategic planing and a very important to the operational efficiency. As the semiconductor manufacturing technology has entered the 8-inch wafer era, the complexity of fab operation increases with the increase of wafer size. The wafer handling method has evolved from manual mode in 6-inch wafer fab to semi-automated or fully automated factory in 8-inch and 12-inch wafer fab. The distribution of manpower requirement in each specialty varied as the trend of fab operation goes for downsizing manpower with automation and outsourcing maintenance work. This paper is to study the specialty distribution of manpower from the requirement in a typical 6-inch, 8-inch to 12-inch wafer fab. The human resource planning in today’s fab operation shall consider many factors, which include the stability of technical talents. This empirical study mainly focuses on the human resource planning, the manpower distribution of specialty structure and the forecast model of internal demand/supply in current semiconductor manufacturing company. Considering the market fluctuation with the demand of varied products and the advance in process technology, the study is to design a headcount forecast model based on current manpower planning for direct labour (DL) and indirect labour (IDL) in Taiwan’s fab. The model can be used to forecast the future manpower requirement on each specialty for the strategic planning of human resource to serve the development of the industry.
이 연구는 내항 해기사 인력 부족 문제가 성공적으로 해결될 수 있도록 내항 선박 척수와 해기사 현황을 고찰하고, 선박규모별 척수를 예측하여 선박직원법상의 선박 규모별 승무정원을 적용하여 내항 해기사 인력 수요를 급수별로 예측하였다. 인력 공급은 Markov모형을 활용하여 항해사와 기관사의 연도별 이직 및 퇴직 인원과 신규 진입 및 외부 전입인원수를 반영하여 예측하였다. 내항 해기사 인력 수요는 2023년 6,057명, 2030년 7,079명으로 증가하고, 공급은 2023년 5,771명, 2030년 5,130명으로 예측되어 인력부족이 심화되는 것으로 나타났다. 이 연구는 내항 해기사의 하급 해기사 부족과 고령화의 고용실태를 반영하고 정량적 분석을 통해 인력 수요와 공급을 정확히 예측하고, 5급 및 6급의 하급면허 해기사 인력 확충 필요성을 제시함으로써 내항해운의 해기사 인력 부족 문제를 해결하는데 유용한 자료로 활용될 수 있을 것이다.
민간경비 산업에서의 인력수요 예측은 협력 치안이 강조되는 현실에서 치안 정책과 관련된 주요 의사결정의 기초가 된다는 정책기능과 함께 장래 사회 구성원들의 올바른 진로선택에 도움을 줄 수 있도록 하는 정보기능도 수행한다는 점에서 정확한 예측이 요구되는 분야이다. 이에 최근 산업분야의 인력수요에서 보다 신뢰성 있는 수요예측을 위해 널리 활용되고 있는 ARIMA 모형을 이용하여 민간경비 산업에서의 인력 수요를 예측해 보았다. 본 연구에서는 과거 33년 치 연도별 시계열 자료를 이용하여 향후 5년 동안의 민간경비 인력 수요를 예측하였다. ARIMA 모형 설정의 기본 절차인 모형 식별 - 모수 추정 - 모형 적합성 진단을 통해 ARIMA(0, 2, 1) 모형을 최종모형으로 선정하였다. 이에 따라 민간경비 인력 수요를 예측한 결과 향후 5년 동안 지속적인 증가 현상을 확인할 수 있으며 그 증가폭 또한 전년 대비 최소 1.3%에서 최대 3.8%까지에 이를 것으로 전망할 수 있었다. 본 연구 결과를 토대로 경찰과 관련 업체에서의 향후 바람직한 대응전략들에 대하여 검토해 보았다.
본 연구는 호텔 MICE의 적정인력 산정을 위한 지표를 개발하는 목적에서 시작되었다. 따라서 본 연구는 국내외 다양한 MICE 행사들을 유치하고 운영하고 있는 서울의 특급호텔 MICE 관련 전문가들을 대상으로 적정 인력을 산정할 때 중요하게 고려해야 하는 항목들을 도출하고 지표의 신뢰성과 타당성을 시도하였다. 연구결과 및 내용은 다음과 같다. 첫째, 도출 결과의 일반화를 위하여 최종 개발된 지표는 호텔 MICE 행사와 관련한 289명의 종사원들을 대상으로 실증 분석을 하여 지표의 신뢰성과 타당성을 검토하였다. 둘째, 그 결과 호텔의 인력 산정 및 운영에 매우 큰 영향을 미치는 호텔의 인사 및 경영전략을 3가지로 분류(서비스 지향, 안정성 지향, 효율성 지향)하였다. 셋째, 도출된 지표는 실무적으로 측정할 수 있도록 정량지표(15개)와 정성 지표(19개)로 구분하였으며, 호텔 MICE의 적정인력 산정은 정량지표와 정성 지표와 의 총계이다. 본 연구는 도출된 적정인력 지표를 정량 및 정성 지표로 구분하고 향후 실측할 수 있는 산식의 모형을 제시하였다는 점에서 향후 실무적으로 크게 기여할 것으로 기대한다.
This study focused on the alternative to estimate the demand of employment in Kenya logistics. First of all, it investigated the importance and necessity of search about the present circumstance of the country's industry. Next, it reviewed respectively the concept and limitation of several previous models for employment, including Bureau of Labor Statistics, USA; ROA, Netherlands; IER (Institute for Employment Research), UK; and IAB, Germany. In regard to the demand forecasting of employers in logistics, it could anticipate more realistically the future demand by the time-lag approach. According to the findings, if value of output record 733,080 KSH million in 2015 and 970,640 in 2020, compared to 655,222 in 2013, demand on wage employment in logistics industry would be reached up to 95,860 in 2015 and 104,329 in 2020, compared to about 89,600 in 2012. To conclude, this study showed the more rational numbers about the demand forecasting of employment than the previous researches and displayed the systematic approach to estimate industry manpower in logistics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.