• Title/Summary/Keyword: Manning's coefficient

Search Result 54, Processing Time 0.027 seconds

Variation of Manning's Coefficient due to Vegetation in Open Channel (개수로내 식생에 의한 Manning계수의 변화)

  • Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.401-404
    • /
    • 2008
  • The vegetation in the surrounding area of river is a primary factor to increase water level during flood. The influence of vegetation on the river flow in a bank has been investigated by using a hydraulic experiment. For a hydraulic experiment square-shaped piers are used as a model of unsubmerged rigid vegetation in a open channel. For fully developed uniform flows, the water elevation of the experiment was measured as varying the interval of piers and the porosity which presents the fraction of water flowing area in the cross-sectional area. The Manning's roughness coefficient, which implicates energy losses due to the vegetation, was obtained by using the experimental data. As a result, the energy losses were varied when the distance of piers and the porosity of area were changed, and the Manning's coefficient increased nonlinearly when a water elevation increased.

  • PDF

Effective Wall Roughness corresponding to Roughness Coefficient of Open Channel Flow (개수로 조도계수에 따른 유효 벽면거칠기)

  • Choi, Jun-Woo;Kwon, Kab-Keun;Kim, Hyung-Seok;Yoon, Sung-Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.176-179
    • /
    • 2008
  • In a numerical simulation of open channel turbulent flows, the determination of wall roughness height for wall function was studied. The roughness constant, based on the law-of-the -wall for flow on rough walls, obtained by experimental works for pipe flows is employed in general wall functions. However, this constant of wall function is the function of Froude number in open channel flows. Thus, the wall roughness should be determined by taking into account the effect of Froude number. In addition, the wall roughness should be corresponding to Manning's roughness coefficient widely used for open channels. In this study, the relation between wall roughness height as an input condition and Manning's roughness coefficient was investigated, and an equation for effective wall roughness height considering the characteristics of numerical models was proposed as a function of Manning's roughness coefficient.

  • PDF

Evaluation of Effective Wall Roughness for 3D Computational Analysis of Open Channel Flow (개수로 흐름의 3차원 전산해석을 위한 유효 벽면거칠기 산정)

  • Choi, Junwoo;Baek, Un Il;Lee, Sang Mok;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.627-634
    • /
    • 2008
  • In a numerical simulation of open channel turbulent flows using RANS (Reynolds averaged Navier-Stokes) equations model equipped with VOF (Volume of Fluid) scheme, the determination of wall roughness for wall function was studied. The roughness constant, based on the law-of-the-wall for flow on rough walls, obtained by experimental works for pipe flows is employed in general wall functions. However, this constant of wall function is the function of Froude number in open channel flows. Thus, the wall roughness should be determined by taking into account the effect of Froude number. In addition, the wall roughness should be corresponding to Manning's roughness coefficient widely used for open channels. In this study, the relation between wall roughness height as an input condition and Manning's roughness coefficient was investigated, and an equation for effective wall roughness height considering the characteristics of numerical models was proposed as a function of Manning's roughness coefficient.

Calculation of Abnormallly Large Flood Discharge Amount Destroying the Stage Gaging Station (이상 호우에 의하여 붕괴된 수위국 지점의 홍수량 규모 결정)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.675-678
    • /
    • 2008
  • An abnormal storm by the typhoon of RUSA in 2002th year was broken out with tremendous flood demages and inundations on the basin of Chogangcheon located in the upper middle part of Guem river's upstream. This flood could not be engaged because it was so big that the stage engaging Songcheon station stuck to Songcheon bridge was destroyed by submerging. In this study the quantity of the flood was calculated by use of Manning's equation and suitable roughness coefficient was suggested.

  • PDF

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Flow Resistance Analysis for Lower Naesung Stream Considering Grain and Bedform Roughness (사립조도와 하상형상조도를 고려한 내성천 하류의 흐름저항 분석)

  • Ji, Un;Kim, Ji-Sung;Lee, Chan Joo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1209-1220
    • /
    • 2013
  • Roughness coefficients calibrated by flow modeling using the 1-dimensional numerical model were analyzed for the downstream section of Naesung Stream in this study. Also, the bedform configuration at the Hyangseok Station was predicted for measured and simulated hydraulic conditions of flows and total flow roughness was estimated with the coefficient of grain roughness. The Manning's n coefficients calibrated by numerical modeling and estimated by considering of grain and bedform roughness were compared and examined. As a result, the Manning's n by numerical modeling was greater than the coefficient range estimated by grain and bedform roughness at the low flow regime due to the other factors such as vegetation, sinuosity, and sand bar. However, the Manning's n by numerical modeling was included in the coefficient range by grain and bedform roughness at the transition and high flow regime over $500m^3/s$ of flow discharge.

Change of Water Level in Vegetated Channels (식생된 수로에서의 수위변화 분석)

  • Kim, byeong-chan;Yun, seong-jun;Kim, min-jeong;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.780-783
    • /
    • 2008
  • This study developed a model that could calculate roughness using Manning's and Chezy coefficient for Yangjae-stream. The estimated roughness by model developed was used for roughness coefficient in the stream without water level-discharge data. Roughness coefficient was estimated using assumed and calculated water level about each discharge scale by unsteady flow analysis. As a result, error of water surface level by model was shown 1.29m, it was shown that the flow resistance tends to increase with the desity of vegetation.

  • PDF

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

Numerical Solution of Colebrook-White Equation and It's Application (콜부르크-화이트 방정식의 수치해와 이의 적용)

  • Kim, Minhwan;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • In analysis of pipelines or pipe network we calculated the friction loss using Hazen-Williams or Manning formula approximately, or found one by friction coefficient from Moody diagram graphically. The friction coefficient is determined as a function of relative roughness and Reynolds number. But the calculated friction coefficient by Hazen-Williams or Manning formula considered roughness of pipe or velocity of flow. The friction coefficient in Darcy-Weisbach equation was obtained from the Moody diagram. This method is manual and is not exact from reading. This paper is presented numerical solution of Colebrook-White formula including variables of relative roughness and Reynolds number. The suggested subroutine program by an efficient linear iteration scheme can be applied to any pipe network system.

Unsteady Flow Model for the Main Reach of the Han River : Calibration (한강 본류에 대한 부정류 계산모형 : 모형의 보정)

  • Hwang, Ui-Jun;Jeon, Gyeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.549-559
    • /
    • 1997
  • A multiply-connected network unsteady flow model for the main reach of the Han River is developed. It is a variable parameter model which allows variable roughness coefficient for each computational point according to the spatial position and the value of discharge. Sensitivities of the model to roughness coefficient and weir-flow discharge coefficient are tested, and as a result Manning's roughness coefficient is selected as the calibration parameter. The model is calibrated and verified using the records of the past flood events. A modified Gauss-Newton method is used for the optimal calibration of roughness coefficients. From the calibration of variable parameter model, spatial variation and discharge dependence of Manning's roughness coefficient are identified. That is, the roughness coefficient is higher for the upstream reach of the Wangsook stream Junction, and it decreases as the discharge increases. It turns out through the verification that the stages calculated by the variable parameter model agree better with the observed than those by the conventional single parameter model. Spatial variation of the roughness coefficient appears to be more significant than the dependence of the discharge.

  • PDF