DOI QR코드

DOI QR Code

Flow Resistance Analysis for Lower Naesung Stream Considering Grain and Bedform Roughness

사립조도와 하상형상조도를 고려한 내성천 하류의 흐름저항 분석

  • Ji, Un (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Kim, Ji-Sung (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Lee, Chan Joo (River and Coastal Research Division, Korea Institute of Construction Technology)
  • 지운 (한국건설기술연구원 하천해안연구실) ;
  • 김지성 (한국건설기술연구원 하천해안연구실) ;
  • 이찬주 (한국건설기술연구원 하천해안연구실)
  • Received : 2013.07.05
  • Accepted : 2013.11.04
  • Published : 2013.12.31

Abstract

Roughness coefficients calibrated by flow modeling using the 1-dimensional numerical model were analyzed for the downstream section of Naesung Stream in this study. Also, the bedform configuration at the Hyangseok Station was predicted for measured and simulated hydraulic conditions of flows and total flow roughness was estimated with the coefficient of grain roughness. The Manning's n coefficients calibrated by numerical modeling and estimated by considering of grain and bedform roughness were compared and examined. As a result, the Manning's n by numerical modeling was greater than the coefficient range estimated by grain and bedform roughness at the low flow regime due to the other factors such as vegetation, sinuosity, and sand bar. However, the Manning's n by numerical modeling was included in the coefficient range by grain and bedform roughness at the transition and high flow regime over $500m^3/s$ of flow discharge.

본 연구에서는 내성천 하류 구간을 대상으로 검보정된 1차원 수치모형을 이용하여 흐름모의를 수행함으로써 추정된 구간 조도계수에 대해 분석하였다. 또한 실측 및 모의된 수리조건을 이용하여 향석 지점에서의 하상형태 예측을 수행하였으며 사립조도에 의한 흐름저항 계수 값을 고려하여 총 흐름저항 조도계수를 산정하였다. 수치모의에 의해 추정된 구간 조도계수와 사립조도 및 하상형태에 의한 흐름저항 계수를 추정한 결과 값을 상호 비교 분석하였으며 그 결과, 저수류 영역 흐름에서는 사립조도 및 하상형태에 의한 흐름저항 외에 식생, 만곡도, 사주 등의 기타 요인들에 의한 영향이 크게 반영되어 수치모의 상의 조도계수 값이 사립조도 및 하상형태에 의해 추정 가능한 조도계수 범위보다 크게 산정되는 것으로 나타났다. 그러나 $500m^3/s$ 이상의 천이구간 및 고수류 영역에서는 사립조도 및 하상형태 예측에 의한 조도계수 범위에 수치모의에 의해 검증된 Manning 조도계수가 포함되는 것으로 나타났다.

Keywords

References

  1. Alam, A.M., and Kennedy, J.F. (1969). "Friction factors for flow in sand-bed channels." Journal of Hydr. Div., ASCE, Vol. 95, No. 6, pp. 1973-1992.
  2. Bae, J.S., Shin, C.H., Lee, J-K., and Yoon, S.B. (2012). "Analysis of Effect of Roughness Coefficient on Numerical Simulation for Stream Flow." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 2. pp. 151-158. https://doi.org/10.9798/KOSHAM.2012.12.2.151
  3. Chien, N., and Wan, Z. (1999). Mechanics of Sediment Transport, ASCE Press, Reston, Virginia, U.S.
  4. Einstein, H.A. (1950). "The bed load function for sediment transportation in open channel flows." Technical Bulletin no. 1026, U.S. Department of Agriculture, Washington, D.C., U.S.
  5. Einstein, H.A., and Barbarossa, N.L. (1952). "River channel roughness." Trans. ASCE, Vol. 117, pp. 1121-1132.
  6. Engelund, F., and Hansen, E. (1967). A monograph on sediment transport. Thechnisk Forlag, Copenhagen, Demark.
  7. Griffiths, G.A. (1989). "Form resistance in gravel channels with mobile beds." Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 3, pp. 340-355. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:3(340)
  8. Ji, U., Julien, P.Y., Park, S., and Kim, B. (2008). "Numerical Modeling for Sedimentation Characteristics of the Lower Naksong River and Sediment Dredging Effects at the Nakdong River Estuary Barrage." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 4, pp. 405-411.
  9. Julien, P.Y. (1998). Erosion and Sedimentation, Cambridge University Press, Cambridge, UK.
  10. Julien, P.Y. (2002). River Mechanics, Cambridge University Press, Cambridge, UK.
  11. Karim, F. (1995). "Bed configuration and hydraulic resistance in alluvial channel flows." Journal of Hydraulic Engineering, ASCE, Vol. 121, No. 1, pp. 15-25. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:1(15)
  12. Kim, J., Kim, H., and Lee, J-K. (2011). "Review of Roughness Coefficient Characteristics for Rivers in Korea." Journal of Korea Water Resources Association, Vol. 44, No. 9, pp. 695-710. https://doi.org/10.3741/JKWRA.2011.44.9.695
  13. Kim, J-S., Lee, C.J., and Kim, W. (2007a). "Calculation of Roughness Coefficient in Gravel-bed River with Observed Water Levels." Journal of Korea Water Resources Association, Vol. 40, No. 10, pp. 755-768. https://doi.org/10.3741/JKWRA.2007.40.10.755
  14. Kim, J-S., Lee, C.J., and Kim, W. (2007b). "Uncertainty Analysis in Estimation of Roughness Coefficient using the Field Measurement Data." Journal of Korea Water Resources Association, Vol. 40, No. 10, pp. 801-810. https://doi.org/10.3741/JKWRA.2007.40.10.801
  15. Kim, S.H., and Kim, J-S. (2013). "Effect of Chungju Dam Operation for Flood control in the Upper Han River." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 2, pp. 537-548. https://doi.org/10.12652/Ksce.2013.33.2.537
  16. Kim, W., Kim, Y.S., and Woo, H.S. (1995). "Estimation of Channel Roughness Coefficients in the Han River Using Unsteady Flow Model." Journal of Korea Water Resources Association, Vol. 28, No. 6, pp. 133-146.
  17. Korea Institute of Construction Technology (2013). Analysis of Change in River Morphology and Vegetation Due to Articifial Structures-Year 2012, Report of Korea Institute of Construction Technology, Korea (in Korean)
  18. Lane, E.W., and Carlson, E.J. (1953). "Some factors affecting the stability of canals constructed in coarse granular materials." Proceedings, Minnesota International Hydraulic Convention.
  19. Lee, C.J., Kim, W., and Kim, J.S. (2007). "An investigation on methods for estimation of roughness coefficient in domestic rivers." 2007 Proceedings, Korea Water Resources Association, pp. 966-970.
  20. Li, C.H., and Liu, J.M. (1963). Resistance of alluvial rivers, Report of Nanjing Hydraulic Research Institute, China (in Chinese).
  21. Ministry of Land, Transport and Maritime. (2011). Hydrological Survey Report-Year 2010, Report of Hydrological Survey Center., Korea (in Korean).
  22. Ministry of Land, Transport and Maritime. (2012). Hydrological Survey Report-Year 2011, Report of Hydrological Survey Center., Korea (in Korean).
  23. Ministry of Land, Infrastructure and Transport. (2013). Basic River Plan for the Naesungcheon Watershed-Downstream(Modified) (in Korean).
  24. Meyer-Peter, P.E., and Muller, R. (1948). "Formulas for bed load transport." Proceedings of the 3rd International Association for Hydraulic Research, Stockholm, pp. 39-64.
  25. Richardson, E.V., and Simons, D.B. (1967). "Resistance to flow in sand channels." Proceedings, 12th Congr. of IAHR, Vol. 1, pp. 141-150.
  26. Simons, D.B., and Richardson, E.V. (1963). "Form of bed roughness in alluvial channels." Trans. ASCE, Vol. 128, pp. 284-323.
  27. Simons, D.B., and Richardson, E.V. (1966). Resistance to flow in alluvial channels, Professional paper 422-J, Washington, D.C., U.S. Geological Survey.
  28. Simons, D.B., and Richardson, E.V. (1971). "Flow in alluvial channels." River Mechanics, Vol. 1, ed. Shen, H. W., Water Resources Publications, Fort Collins, Colorado, U.S.
  29. Strickler, A. (1923). "Beitrazozur Frage der Gerschwindigheits formel und der Rauhigkeitszahlen fur Strome Kanale und Geschlossene Leitungen." Mitteilungen des Eidgenossischer Amtes fur Wasserwirtschaft, Bern.
  30. USACE (2010). HEC-RAS River Analysis System User's Manual Version 4.1, Hydrologic Engineering Center, David, CA.
  31. Vidal, J.-P., Moisan, S., Faure, J.-B., and Dartus, D. (2007). "River model calibration, from guidelines to operational support tools." Environmental Modelling & Software, Vol. 22, pp. 1628-1640. https://doi.org/10.1016/j.envsoft.2006.12.003
  32. Woo, H. S. (2001). River Hydraulics, Cheong Moon Gak Publisher, Korea.
  33. Wu, W., and Wang, S. (1999). "Movable bed roughness in alluvial rivers." Journal of Hydraulic Engineering, ASCE, Vol. 125, No. 12, pp. 1309-1312. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1309)
  34. Yang, C.T. (2003). Sediment Transport: Theory and Practice, Krieger Publishing Company, Malabar, Florida, U.S.
  35. Yen, B.C. (2002). "Open Channel Flow Resistance." Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 1, pp. 20-39. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20)

Cited by

  1. Simulation of Change in Physical Habitat of Fish Using the Mobile Bed Model in a Downstream River of Dam vol.2, pp.4, 2015, https://doi.org/10.17820/eri.2015.2.4.317