• Title/Summary/Keyword: Mann iterative scheme

Search Result 10, Processing Time 0.025 seconds

AN EFFICIENT THIRD ORDER MANN-LIKE FIXED POINT SCHEME

  • Pravin, Singh;Virath, Singh;Shivani, Singh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.785-795
    • /
    • 2022
  • In this paper, we introduce a Mann-like three step iteration method and show that it can be used to approximate the fixed point of a weak contraction mapping. Furthermore, we prove that this scheme is equivalent to the Mann iterative scheme. A comparison is made with the other third order iterative methods. Results are presented in a table to support our conclusion.

STRONG CONVERGENCE THEOREMS FOR A QUASI CONTRACTIVE TYPE MAPPING EMPLOYING A NEW ITERATIVE SCHEME WITH AN APPLICATION

  • Chauhan, Surjeet Singh;Utreja, Kiran;Imdad, Mohammad;Ahmadullah, Md
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.1-25
    • /
    • 2017
  • In this paper, we introduce a new scheme namely: CUIA-iterative scheme and utilize the same to prove a strong convergence theorem for quasi contractive mappings in Banach spaces. We also establish the equivalence of our new iterative scheme with various iterative schemes namely: Picard, Mann, Ishikawa, Agarwal et al., Noor, SP, CR etc for quasi contractive mappings besides carrying out a comparative study of rate of convergences of involve iterative schemes. The present new iterative scheme converges faster than above mentioned iterative schemes whose detailed comparison carried out with the help of different tables and graphs prepared with the help of MATLAB.

EXISTENCE AND MANN ITERATIVE METHODS OF POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Hao, Jinbiao;Kang, Shin Min
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.299-309
    • /
    • 2010
  • In this paper, we study the first order nonlinear neutral difference equation: $${\Delta}(x(n)+px(n-{\tau}))+f(n,x(n-c),x(n-d))=r(n),\;n{\geq}n_0$$. Using the Banach fixed point theorem, we prove the existence of bounded positive solutions of the equation, suggest Mann iterative schemes of bounded positive solutions, and discuss the error estimates between bounded positive solutions and sequences generated by Mann iterative schemes.

FIXED POINT THEOREMS IN COMPLEX VALUED CONVEX METRIC SPACES

  • Okeke, G.A.;Khan, S.H.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.117-135
    • /
    • 2021
  • Our purpose in this paper is to introduce the concept of complex valued convex metric spaces and introduce an analogue of the Picard-Ishikawa hybrid iterative scheme, recently proposed by Okeke [24] in this new setting. We approximate (common) fixed points of certain contractive conditions through these two new concepts and obtain several corollaries. We prove that the Picard-Ishikawa hybrid iterative scheme [24] converges faster than all of Mann, Ishikawa and Noor [23] iterative schemes in complex valued convex metric spaces. Also, we give some numerical examples to validate our results.

STRONG CONVERGENCE OF MONOTONE CQ ITERATIVE PROCESS FOR ASYMPTOTICALLY STRICT PSEUDO-CONTRACTIVE MAPPINGS

  • Zhang, Hong;Su, Yongfu;Li, Mengqin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.763-771
    • /
    • 2009
  • T.H. Kim, H.K. Xu, [Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal.(2007),doi:l0.l016/j.na.2007.02.029.] proved the strong convergence for asymptotically strict pseudo-contractions by the classical CQ iterative method. In this paper, we apply the monotone CQ iterative method to modify the classical CQ iterative method of T.H. Kim, H.K. Xu, and to obtain the strong convergence theorems for asymptotically strict pseudo-contractions. In the proved process of this paper, Cauchy sequences method is used, so we complete the proof without using the demi-closedness principle, Opial's condition or others about weak topological technologies. In addition, we use a ingenious technology to avoid defining that F(T) is bounded. On the other hand, we relax the restriction on the control sequence of iterative scheme.

  • PDF

NOOR ITERATIONS FOR NONLINEAR LIPSCHITZIAN STRONGLY ACCRETIVE MAPPINGS

  • Jeong, Jae-Ug;Noor, M.-Aslam;Rafig, A.
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.337-348
    • /
    • 2004
  • In this paper, we suggest and analyze Noor (three-step) iterative scheme for solving nonlinear strongly accretive operator equation Tχ = f. The results obtained in this paper represent an extension as well as refinement of previous known results.

  • PDF

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.

Iterative Target Localization Method for Distributed MIMO Radar System (반복적 연산을 이용하는 Distributed MIMO 레이다 시스템의 위치 추정 기법)

  • Shin, Hyuksoo;Chung, Young-Seek;Yang, Hoon-Gee;Kim, Jong-mann;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.819-824
    • /
    • 2017
  • This paper presents a target localization scheme for distributed Multi-input Multi-output(MIMO) radar system using ToA measurements obtained from multiple transmitter and receiver pairs. The proposed method can locate the target from an arbitrary initial point by iteratively finding the Taylor linear approximation equation. The simulation results show that proposed method achieves the better mean square error(MSE) performance than the existing target localization methods, and furthermore, attains Cramer-Rao Lower Bound(CRLB).