• Title/Summary/Keyword: Mann iteration process

Search Result 19, Processing Time 0.018 seconds

ITERATIVE SOLUTION OF NONLINEAR EQUATIONS WITH STRONGLY ACCRETIVE OPERATORS IN BANACH SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.605-615
    • /
    • 2000
  • Let E be a real Banach space with property (U,${\lambda}$,m+1,m);${\lambda}{\ge}$0; m${\in}N$, and let C be a nonempty closed convex and bounded subset of E. Suppose T: $C{\leftrightarro}C$ is a strongly accretive map, It is proved that each of the two well known fixed point iteration methods( the Mann and Ishikawa iteration methods.), under suitable conditions , converges strongly to a solution of the equation Tx=f.

INERTIAL PICARD NORMAL S-ITERATION PROCESS

  • Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.995-1009
    • /
    • 2021
  • Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are very useful to elucidate the fixed point problems of a nonlinear operators in various topological spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in which next iterative depends on more than one previous terms. The purpose of the paper is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by Suparatulatorn et al. [27]) via numerical example.

Fixed point iterations for quasi-contractive maps in uniformly smooth banach spaces

  • Chidume, C.E.;Osilike, M.O.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.201-212
    • /
    • 1993
  • It is our purpose in this paper to first establish an inequality in real uniformly smooth Banach spaces with modulus of smoothness of power type q > 1 that generalizes a well known Hilbert space inequality. Using our inequality, we shall then extend the above result of Qihou [15] on the Ishikawa iteration process from Hilbert spaces to these much more general Banach spaces. Furthermore, we shall prove that the Mann iteration process converges strongly to the unique fixed point of a quasi-contractive map in this general setting. No compactness assumption on K is required in our theorems.

  • PDF

Superior Julia Set

  • Rani, Mamta;Kumar, Vinod
    • Research in Mathematical Education
    • /
    • v.8 no.4
    • /
    • pp.261-277
    • /
    • 2004
  • Julia sets, their variants and generalizations have been studied extensively by using the Picard iterations. The purpose of this paper is to introduce Mann iterative procedure in the study of Julia sets. Escape criterions with respect to this process are obtained for polynomials in the complex plane. New escape criterions are significantly much superior to their corresponding cousins. Further, new algorithms are devised to compute filled Julia sets. Some beautiful and exciting figures of new filled Julia sets are included to show the power and fascination of our new venture.

  • PDF

STRONG AND Δ-CONVERGENCE OF A FASTER ITERATION PROCESS IN HYPERBOLIC SPACE

  • AKBULUT, SEZGIN;GUNDUZ, BIROL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • In this article, we first give metric version of an iteration scheme of Agarwal et al. [1] and approximate fixed points of two finite families of nonexpansive mappings in hyperbolic spaces through this iteration scheme which is independent of but faster than Mann and Ishikawa scheme. Also we consider case of three finite families of nonexpansive mappings. But, we need an extra condition to get convergence. Our convergence theorems generalize and refine many know results in the current literature.

STRONG CONVERGENCE OF MONOTONE CQ ITERATIVE PROCESS FOR ASYMPTOTICALLY STRICT PSEUDO-CONTRACTIVE MAPPINGS

  • Zhang, Hong;Su, Yongfu;Li, Mengqin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.763-771
    • /
    • 2009
  • T.H. Kim, H.K. Xu, [Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal.(2007),doi:l0.l016/j.na.2007.02.029.] proved the strong convergence for asymptotically strict pseudo-contractions by the classical CQ iterative method. In this paper, we apply the monotone CQ iterative method to modify the classical CQ iterative method of T.H. Kim, H.K. Xu, and to obtain the strong convergence theorems for asymptotically strict pseudo-contractions. In the proved process of this paper, Cauchy sequences method is used, so we complete the proof without using the demi-closedness principle, Opial's condition or others about weak topological technologies. In addition, we use a ingenious technology to avoid defining that F(T) is bounded. On the other hand, we relax the restriction on the control sequence of iterative scheme.

  • PDF

MANN-ITERATION PROCESS TO THE SOLUTION OF $y=x+Tx$ FOR AN ACDRETIVE OPERATOR T IN SOME BANACH SPACES

  • Park, Jong-An
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.819-823
    • /
    • 1994
  • If H is a Hilbert space, then an operator $T : D(T) \subset H \to H$ is said to be monotone if $$ (x-y, Tx-Ty) \geq 0$$ for any x, y in D(T). Many authors [1], [4] obtained the existence theorem for the equation $y = x + Tx$ for x, given an element y in H and a monotone operator T. On the other hand some iterative methods were applied to the approximations for the solution of the above equation [6], [8]. For example Bruck [2] obtained the iterative solution of the above equation with an explicit error estimate as follows.

  • PDF

WEAK AND STRONG CONVERGENCE FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Kim, Gang-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.799-813
    • /
    • 2012
  • In this paper, we first show that the iteration {$x_n$} defined by $x_{n+1}=P((1-{\alpha}_n)x_n +{\alpha}_nTP[{\beta}_nTx_n+(1-{\beta}_n)x_n])$ converges strongly to some fixed point of T when E is a real uniformly convex Banach space and T is a quasi-nonexpansive non-self mapping satisfying Condition A, which generalizes the result due to Shahzad [11]. Next, we show the strong convergence of the Mann iteration process with errors when E is a real uniformly convex Banach space and T is a quasi-nonexpansive self-mapping satisfying Condition A, which generalizes the result due to Senter-Dotson [10]. Finally, we show that the iteration {$x_n$} defined by $x_{n+1}={\alpha}_nSx_n+{\beta}_nT[{\alpha}^{\prime}_nSx_n+{\beta}^{\prime}_nTx_n+{\gamma}^{\prime}_n{\upsilon}_n]+{\gamma}_nu_n$ converges strongly to a common fixed point of T and S when E is a real uniformly convex Banach space and T, S are two quasi-nonexpansive self-mappings satisfying Condition D, which generalizes the result due to Ghosh-Debnath [3].