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Julia sets, their variants and generalizations have been studied extensively by using the
Picard iterations. The purpose of this paper is to introduce Mann iterative procedure in
the study of Julia sets. Escape criterions with respect to this process are obtained for
polynomials in the complex plane. New escape criterions are significantly much superior
to their corresponding cousins. Further, new algorithms are devised to compute filled
Julia sets. Some beautiful and exciting figures of new filled Julia sets are included to
show the power and fascination of our new venture.
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1. INTRODUCTION

Perhaps no computer experiments exceed in excitement, fascination and wonderment
the graphical representations of Julia and Mandelbrot sets in a complex plane. These are
the parts of iteration dynamics. Julia sets live in complex plane and are non-empty (see
Steinmnetz (1993, p. 28). For a detailed analysis of these sets, one may refer to Barnsley
(1988), Beardon (1991), Branner & Hubbard (1988), Carleson & Gamelin (1993), Crilly,
Earnshaw & Jones (1991), Crownover (1995), Devaney (1992), Edgar (1990), Kigami
(2001), Peitgen, Jurgens & Saupe (1992a, 1992b, 1992¢) and Barnsley et al. (1988).

Julia sets are the striking examples of computational experiments that were far ahead
of its time. These mathematical objects were seen when computer graphics became
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available. Julia set is the place where all of the chaotic behavior of a complex function
occurs (¢f. Devaney 1992, p. 221).

Consider the quadratic family of the form Q.(z) = 22 + c. All real quadratic functions
are topologically conjugate to the real polynomials (). for some c. This fact extends to the
complex quadratic functions. All complex quadratic functions are topologically conjugate
to the complex polynomial (.(z) for some c.

The simplest example of a Julia set occurs for Q.(z) with ¢ = 0. Here the Julia set is a
circle. This particular Julia set is not a fractal, but usually Julia sets are fractals. Every Julia
set for Q.(z) = 22 + c is either connected or totally disconnected. Some of the connected
Julia sets are simple closed curves. These closed curves are fractals if 0 < |¢| < %. There
are also connected Julia sets that are not closed curves (for example, see Figure 3 when
¢ = —1). All of the totally disconnected Julia sets have the property of being Cantor dust.

To iterate 22 + ¢, we choose some value for z and apply function iteration (Picard iter-
ation). Thus we get a Julia set for ¢. A commutative generalization of complex numbers
called bicomplex numbers have also been used to generate Julia sets in three and four di-
mensions (Peitgen, Jurgens & Saupe 1992c¢). Rochon (2000) used bicomplex numbers to
introduce bicomplex dynamics. In particular, he gave generalizations of the filled Julia sets
in dimension three and four.

In this paper, we generate superior Julia sets in the complex plane by applying Mann
iterations, which are more general than that of the Picard. We discuss a new escape criterion
for quadratic functions to generate Julia sets with respect to Mann iterations in Section 3.
We also discuss a similar escape criterion for cubic functions and finally a general escape
criterion for polynomials having only two terms: highest degree term and a constant. The
intent of the last section is to present some of the beautiful figures obtained while computing
algorithms of filled superior Julia sets for quadratic, cubic and biquadratic polynomials.

2. PRELIMINARIES

Basically there are two types of feedback machines (see, for instance, Mandelbrot 1998;
Peitgen, Jurgens & Saupe 1992b).

¢ One-step machine,

¢ Two-step machine.

One step machines may be characterized by Picard iterations zn41 = f(x,), where f is
any function. It requires one number as input and returns a new number.
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In two-step feedback machines, output is computed by the formula z, 11 = g(zn, Zn-1).

Feedback line

It requires two numbers as input and returns a new number. We introduce Mann iterations as
an example of two-step feedback processes. In this iterative procedure, we use a parameter
s, which lies between 0 and 1, and z,, and z,,_ are used as input and the output is denoted
by zy+1. Thus
Tnt1 = g(f(2Tn)s Tn) = sf(zn) + (1 = s)zn.

Evidently, at s = 0, no change takes place in the output and, at s = 1, two-step machine
works as a one-step machine.

Let Q(2) := agz" + 12" ' + .- +apn_12 +an, ag # 0 be a polynomial of degree
n, where n > 2. The coefficients ag, a1, .. ., a, are allowed to be complex numbers. In all
that follows Q. will stand for 22 + c.

Definition 2.1. Let X be a non-empty set and f : X — X. For a point xg in X, the Picard
orbit (generally called orbit of f or trajectory of f) is the set of all iterates of a point zg,
that is:

O(f,z0) :=A{xn : Tn = f(Tn-1), n=12,...}.
Notice that the orbit O(f, zo) of f at the initial point zg is { f/"(xo)}. In all that follows,

by orbit we mean Picard orbit unless otherwise stated.

The collection of points that are bounded, i. e., there exists an M such that | Q™ (z) | < M
for all n, is called the prisoner set, while the collection of points that are in the stable set of
infinity is called the escape set. Thus the boundary of the prisoner set is simultaneously the
boundary of the escape set and that is the Julia set for ) (see, for instance, Peitgen, Jurgens
& Saupe 1992b).

Definition 2.2. The set of points K whose orbits are bounded under the function iteration
of Q(z) is called the filled Julia set. The Julia set of () is the boundary of the filled Julia
set K. The boundary of a set is the collection of points for which every neighborhood
contains an element of the set as well as an element, which is not in the set (see, for instance,
Crownover 1995; Devaney 1992; Holmgren 1994).
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2.1. Escape Criterion for Quadratic Functions

There are different escape criterions for different types of functions. The follow-
ing theorem gives the escape criterion for the quadratic function @, = 22 + ¢, and its
corollaries further refine the escape criterion for computational purposes (Beardon 1991;
Crownover 1995; Devaney 1992; Peitgen, Jurgens & Saupe 1992a).

Theorem 2.1. Suppose | z| > |c| > 2, where c is in the complex plane. Then we have
|Q2(z) | — oo as n — oo.

This theorem has following three corollaries.
Corollary 2.1. Suppose | c| > 2. Then the orbit of 0 escapes to infinity under Q).

Corollary 2.2. Suppose |z| > max{|c|,2}. Then |Q%(z)| > |(1 + A)"2| and so

| Q% (z) | — oo as m — oo, where A is a positive number.

Corollary 2.3. Suppose for some k > 0 we have | Q¥(2)| > max{|c|,2}. Then| Q*+1(2)|
(1+ M| Q&(2) ], s0 | Q(2) | — oo asn — 0.

This corollary gives us an algorithm for computing the filled Julia set of ¢, for some c.

2.2. Escape Criterion for Cubic Polynomials

The study of cubic polynomials is more complicated than the study of quadratics. A
typical cubic polynomial has two critical points not just one unlike a quadratic function. It
means several additional phenomena may occur in this case. For example, a cubic polyno-
mial may have two distinct attracting fixed or periodic orbits. Unlike quadratics, where we
have two distinct cases (the critical orbit either escapes or is bounded) as given in Theo-

rem 2.1, there are three possibilities for cubics:

(i) Both critical orbits escape,
(ii) Both critical orbits are bounded.
(i1i) One critical orbit escapes and one remains bounded.

Besides, as there are two complex parameters, this means that the natural parameter
space for cubics is four-dimensional. One may refer to the work Branner & Hubbard (1988)
who are leading experts in the study of dynamics of cubic polynomials. As in the case
of quadratic polynomials, any cubic polynomial is conjugate to one of its special form
(Devaney 1992, p. 266):

Qap(z) = 22 +az+ b,
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where a and b are complex numbers. The following result is needed in the construction of
filled Julia sets (¢f Branner & Hubard 1988; Devaney 1992).

Theorem 2.2. Let Qo 5(2) = 23 + az + b, where a, b are complex numbers. Suppose

|Qzp(2)| > max (|5, (o] +2)3 },

Jfor some n. Then the orbit of z escapes to infinity.

3. MANN ITERATION AND SUPERIOR JULIA SET

Let A be a subset of real or complex numbers and f : A — A. For z¢ € A, construct a
sequence {zn} in A in the following manner.

71 = s1f(zo) + (1 - s1)0,
zg = sof(z1) + (1 — sg)z1,. - .,

Tpn = Spf(Tn-1) + (1 = 8p)Tn-1,.. -,

where 0 < s, < 1 and {sn} is convergent to a non-zero number.

Definition 3.1. The sequence {zn} constructed above is called Mann sequence of iterates
or superior sequence of iterates. We may denote it by SO(f, zo, $n).

Notice that SO(f, g, 8,) with s, = 1 is O(f, zg) (¢f Definition 2.1).

This procedure is essentially due to Mann (1953). We remark that the Mann or superior
orbit SO(f, zo, 8n) With s, = % was first discussed by Krasnosel’skii (1955).

Now we define the Julia set for a function with respect to Mann iterates (superior iter-
ates). We call it superior Julia set (s] set in brief).

Definition 3.2. The set of points SK whose orbits are bounded under superior iteration of
a function Q(z) will be called the filled sJ sets. The sJ set of @ is the boundary of filled sJ
set SK.

Escape criterions play a crucial role in the construction of filled Julia sets of a function.
Now we obtain new and considerably improved escape criterions for these sets. We prefer
to call the same Mann or superior escape criterions.
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3.1. Superior Escape Criterions for Quadratics

The following theorem gives an escape criterion for the function Q. = 22 + ¢ in respect
of the Mann iterative procedure.

Theorem 3.1. Suppose |z| > |c| > % where 0 < s < 1 and c is a complex number.

Define zy = (1 — 8)z + sQc(2),...,z2n = (1 — 8)zn—1 + 8Qc(2pn-1),n = 2,3,.... Then

| 2p | — 00 as n — oo
Proof.
lz1] =] (1= s)z + 5Qc(2) |
=|822 + (1 — s)z + sc) |
> |s22 4+ (1~ 8)z| — | sc|
2| z|(|sz+ (1 =s)]) - 5| 2]
> [2l(jsz ]~ 1+5) ~s|z|
=|z|(s]z| - 1).
Since s| z| > 2, thereisa A > O such that s|z| — 1 > 1 + A. Consequently
lz1] > (1+XN)] 2],

Repeating this argument, we find | zn | > (1 4+ A)*| z].
Thus the Mann orbit of z under the quadratic function @), tends to infinity. This com-
pletes the proof. U

We derive the following interesting results.

Corollary 3.1. Suppose that |c| > % Then the superior orbit SO(Q.,0, s) escapes to

infinity.
Notice that |z| > |c|and | 2| > % So the following corollary is a refinement of the

escape criterion discussed in the above theorem.

Corollary 3.2 (Escape Criterion). Suppose that |z| > max{|c|,2}. Then|z,| > (1+

A z|, and|zn| — o0 as n — oo.

Corollary 3.3. Suppose that | zk| > max{|c|, %}for somek > 0. Then | zk41| > (1 +

M| zk |, and | zn| — oo as n — oo.

This corollary gives an algorithm for computing the filled sJ set of @, for any c. Given
any point z satisfying | z| < |c|, we compute the superior orbit of 2. If, for some 7,
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| 2n | lies outside the circle of radius max{] c|, 2}, we are guaranteed that the orbit escapes.
Hence z is not in the filled sJ set. On the other hand, if | zn | never exceeds this bound, then
z is by definition in the filled sJ set, denoted by SK.. We shall make extensive use of this
algorithm in the next section. It is better understood if we call it semi-algorithm, since in
actual practice, we cannot determine whether a point actually remains in SK in finite time.
3.2. Superior Escape Criterions for Cubic Polynomials

First we prove the following theorem for the function Q,p = 23 + az + b with respect

to the Mann iterative procedure.

Theorem 3.2. Suppose |z| > |b| > (Ja |+ %)% where 0 < s < 1 and a and b are in the
complex plane. Define z1 = (1 — 8)z + sQap(2),-..,2n = (1 — 8)2n-1 + 8Qa p(2n—-1),
n=23,.... Then|zn| — oo asn — oo.
Proof.
{21 = | (1 = s)z+ s(z* + az +b)|

=|s23 +asz+2— 52+ sb|

> |sz3+asz+z—sz|—|sb|

> |z|ls2? +as+1—s|—s|z]

>|z|{|s2® +as| -1+ s} —s|z|

=|z|{s|2*+a|-1+s—s}

=|z|{s| 2% +a| -1}

=s|z|{|z2+a|—§}
sizl{12*1 - lal - -}

=s]z|{|z2|—(|al+§)}.
Sincelz]>(|a]+%)%,

lzj2 — (la|+%> >-i-, e, |z - (Ial+%)}>1.

Hence there is a y > 1 such that | 2; | > 7| z|. Repeating this argument, we find | 2, | >

v

~™| z|. Therefore the superior orbit of z under the cubic polynomial Q, ;(2) tends to infin-
ity. This completes the proof. O

Corollary 3.4. Suppose that |b| > (|a| + %)L, Then the superior orbit SO(Qap,0, s)
escapes to infinity.
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Corollary 3.5 (Escape Criterion). Suppose |z| > max{|b|,(|a]| + %)%} Then |z, | >
Y* z|andso | zn| — oo asn — co.

Corollary 3.6. Assume |z | > max{|b|,(|a|+ —g—)%}forsome k>0, Then|zk+1| >
Y 2k |, and | zn| — co as n — .

Corollary 3.5 gives an escape criterion for cubic polynomials. From Corollary 3.6, we
find an algorithm for computing filled sJ sets of @, , for any a, b.

3.3. A Genaral Escape Criterion
Now we attempt to obtain a general escape criterion for polynomials of the form

G(z)=2"+c

Theorem 3.3. For functions of the form G.(z) = z"+c¢,n=1,2,..., where0 < s < land
cis in the complex plane, Define 21 = (1-5)2+58Go(2), ..., 2n = (1=8)2n_1+5Gc(2-1),

1
n=2,3,.... Then the general escape criterion is max{|c|, (%) -1},

Proof. We shall prove this theorem by induction.
Forn = 1, G.(z) = z + c. So the escape criterion is | ¢ | which is obvious,i.e., | 2| >
max{| c|,0}.
Forn = 2, G.(2) = 2% + c, the escape criterion is max{| c|, %} (see Theorem 3.1).
Forn = 3, G.(z) = 2% + ¢, and the result follows from Theorem 3.2 with @ = 0 and
b = ¢, i. e., the escape criterion is max{]| ¢/, (%)%}. So the theorem is true for n = 1, 2 and
3.
Now suppose that the theorem is true for any n. Let
2\ 1
Ge(z) = 2" 4 ¢ and |z]|>|c|> (—s—)ﬁ'
Then
|21 =11 - 8)z+s(z"t! + )|
=|sz"! — 524 2z + sc|
> |sz™ — sz 4 2| - sc]
>>|z]||s2" —s+1|—s|z]
>|z|{|szn|+s—1} —s|z]|
=|z|(s|z[* - 1).
Since | z| > (2/s)2, s| z|™ ~ 1 > 1. Hence for some A > 0, we have

sjz|"=1>1+ A



Superior Julia Set 269

Thus | z1| > (1 + A)| =]
Repeating this argument we get
lzn| > (1 4+ A)" z].
Therefore, the Mann orbit of z under iteration of 2+ +c tends to infinity. Hence max{| ¢/, (%)% }

is escape criterion. This proves the theorem. |

Corollary 3.7. Suppose that | c| > (%) (71{_15 Then the superior orbit SO(G., 0, s) escapes

to infinity.

Corollary 3.8. Suppose for some k > 0 we have |zk| > max{|c|, (%)“‘_iﬂ} Then
[zk+1]> (1+ A)|zk|, so|zn| — coasn — oo.

This corollary gives a general algorithm for computing filled sJ sets for the functions of
the form G.(z) = 2" +¢,n=1,2....

4. GENERATION OF FILLED SUPERIOR JULIA SETS

Graphically filled Julia sets are more appealing than the Julia sets. Therefore, we have
written a program in C++ to generate filled Julia sets and superior filled Julia sets. Now we
present some beautiful filled sJ sets for quadratic, cubic and biquadratic functions.

Figure 1. Filled superior Julia set for quadratic polynomial with (s, c) = (0.8, —1354)

4.1. Filled Superioir Julia Sets for Q. = 2% + ¢

For an algorithm to generate a filled Julia set, we refer to Devaney (1992), Holm-
gren (1994) and Peitgen, Jurgens & Saupe (1992a, 1992c), and one may devise an al-
most similar algorithm to generate filled sJ sets. We generate a few stiking filled sJ sets
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Figure 2. Filled superior Julia set for quadratic polynomial with (s, c)
(0.7, -0.5 + 1.61)

for various values of s and c. Two such sJ sets are given in Figure 1 and Figure 2 for
(s,¢=0.8,-1.354) and for (s,c) = (0.7, —0.5 + 1.67) respectively.

Figure 3. Flower Pot: filled superior Julia set for cubic polynomial with
(s,a,b) = (0.5, -3, —2.751)

4.2. Filled Superioir Julia Sets for Q.5 = 23 + az + b

We present some of the beautiful figures generated for s = 0.5. Our endeavour to give
names to some of the figures is based on their resemblances with objects known to us.
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Figure 4. T-structure: filled superior Julia set for cubic polynomial with
(s,a,b) = (0.5,0,—3.55%)
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Figure 5. Filled superior Julia set for cubic polynomial with (s,a,b) =
(0.5, —5.3 — 5.3i, — 1)

We are excited to see a flowerpot in Figure 3, a T structure in Figure 4 for (a,b) =
(—1%,—2.75¢) and (0, —3.55¢) respectively. Also see Figure 5 when (a,b) = (-5.3 —
5.3i, —1). Further a wall hanging, dumbbell and a beautiful painting are presented in Fig-
ure 6, Figure 7 and Figure 8 when (a,b) = (—0.255 + 1.35¢,—0.122 — 0.757), (—3.5 —
3.5%,0) and (—0.5 — 3.7¢, —1 — 21) respectively. We are fascinated to see beautiful shapes
in Figure 9 and Figure 10 for (a,b) = (0, —0.55) and (—3 — 34, —1) respectively.

4.3. Filled Superioir Julia Sets for G. = 2* + ¢

Recall that the escape criterion for 24 4 ¢ is max(| ¢/, (%)%) (see Theorem 3.3). We
get a figure symmetric in all four quadrants when (s,c) = (1,—1), see Figure 11. It is
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Figure 6. Wall Hanging: filled superior Julia set for cubic polynomial with
(s,a,b) = (0.5,—0.255 + 1.35¢, —0.122 — 0.75¢)

Figure 7. Dumbbell: filled superior Julia set for cubic polynomial with
(Sa a, b) = (O5a -3.9 - 35@) O)

interesting to see some other filled sJ sets in Figure 12, Figure 13 and Figure 14, when
(s,¢) = (0.7,-0.5 — 0.55¢), (0.05,—0.5 — i) and (0.1, —9.8) respectively.

5. CONCLUDING REMARKS

In the existing literature, Julia sets and their generalizations have been developed us-
ing one-step feedback process (Picard iterations). We have introduced two-step feedback
process (Mann iterates or superior iterates) in the study of Julia sets and obtained sJ sets.
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Figure 8. Painting: filled superior Julia set for cubic polynomial with
(s,a,b) = (0.5,—0.5 — 3.74, —1 — 29)
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Figure 9. Filled superior Julia set for cubic polynomial with (s,a,b) = (0.5,0, ~0.55)

We have derived superior escape criterions for quadratic and cubic polynomials and a gen-
eral escape criterion for a general polynomial of the form 2™ + ¢, n = 2,3,4,... as well.
Further, using these criterions, new algorithms have been devised to compute filled sJ sets
for these functions in the complex plane. Some new fascinating filled superior Julia sets
have been generated.

In the new escape criterions, the range of ¢ in 22 4+ cand z* + ¢ increases. For example,
the escape and the superior escape criterions for 22+ care |¢| > 2and | c| > % respectively
(¢f. Theorems 2.1 and 3.1). For a mild comparison, take s = 0.1 to see that these criterions
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Figure 10. Filled superior Julia set for cubic polynomial with (s,a,b) =
(0.5,-3 —3¢,-1)
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Figure 11. A symmetric figure in all the four quadrants: filled superior
Julia set for biquadratic polynomial with (s, c) = (1, 1)
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Figure 12. Filled superior Julia set for cubic polynomial with (s,c) =
(7,~0.5 — 0.554)

differ by 18 for 22 + c. Further, the range of a and b increases in 2> + az + b (see Theorem
3.2). We observe that the area of a filled superior Julia set is significantly larger than the

corresponding Julia set.
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Figure 13. Filled superior Julia set for biquadratic polynomial with
(s,¢) = (0.05,~0.5 - ¢)

Figure 14. Filled superior Julia set for biquadratic polynomial with
(s,¢) = (0.1,-9.8)

The following question comes in a natural way: Let the parameter s in the superior orbit
be replaced by a sequence {s, } of real numbers converging to a nonnegative number (< 1)
in Section 3.1 and subsequent constructions. Shall we get effectively new constructions?
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