• Title/Summary/Keyword: Manipulators

Search Result 765, Processing Time 0.031 seconds

Kinematic analysis of a 6-degree-of-freedom micro-positioning parallel manipulator (6자유도를 갖는 정밀 위치제어용 병렬 매니퓰레이터의 기구학 해석)

  • 박주연;심재홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.213-216
    • /
    • 1996
  • This paper studies a class of in-parallel manipulators with special geometry where the forward displacement analysis problem can be solved easier than the fully parallel manipulators. Three horizontal links of this mechanism provide 3DOFs(Degrees of Freedom), which are one degree of orientational freedom and two degrees of translatory freedom. Three vertical links of this mechanism provide 3DOFs, which are two degrees of orientational freedom and one degree of translatory freedom. The main advantages of this manipulator, compared with the Stewart platform type, are the capability to produce pure rotation and to predict the motion of the moving platform easily. Since this manipulator has simple kinematic characteristics compared with the Stewart platform, controlling in real-time is possible due to less computational burden. The purpose of this investigation is to develope an analytical method and systematic method to analyze the basic kinematics of the manipulator. The basic kinematic equations of the manipulator are derived and simulation is carried out to show the performance of the mechanism.

  • PDF

Nonlinear robust control design with quadratic Lyapunov function for robots with joint elasticity (2차의 리아프노프 함수에 의한 유연 조인트 로봇의 비선형 견실제어기 설계)

  • 김동환;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.573-576
    • /
    • 1996
  • We propose robust control scheme for flexible joint manipulator in the presence of nonlinearity and mismatched uncertainty. The control is designed based on Lyapunov approach. The robust control which is based on the computed torque scheme and state transformation via implanted control is introduced. The design procedure starts with the construction of linearized subsystems via the computed torque method and then uses state transformation. With this approach we do not impose an upper-bound constraint on the inertia matrix in case it is known. Thus, this control can be applied to arbitrary manipulators. The resulting robust control guarantees practical stability for both the transformed system and the original system. The transformation is only based on the possible bound of uncertainty.

  • PDF

Optimal configuration control for redundant robot manipulators-manipulability-based approach (여유 자유도 로봇의 최적 자세 제어)

  • Lee, Ji-Hong;Lee, Mi-Gyung;Lee, Young-Il;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.739-742
    • /
    • 1996
  • Several figures representing velocity transmission from joint space to task space are analyzed and compared with each other. The figures include velocity ellipsoid derived from Jacobian matrix, scaled velocity ellipsoid derived from normalized joint velocities, polytope derived by numerical scaling, and polytopes derived by linear combinations of Jacobian column vectors. The results show that the optimal directions given by the measures are not the same and the conventional velocity ellipsoid is not good choice as optimization measure as far as the moving direction is concerned. Simulation examples for 3 d.o.f. redundant robot manipulators in 2-dimensional task space are given for comparison study.

  • PDF

Visual servoing of robot manipulators using the neural network with optimal structure (최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF

Iterative learning control of robot manipulators (로봇 매니퓰레이터의 반복 학습 제어)

  • 문정호;도태용;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.470-473
    • /
    • 1996
  • This paper presents an iterative learning control scheme for industrial manipulators. Based upon the frequency-domain analysis, the input update law of the learning controller is given together with a sufficient condition for the convergence of the iterative process in the frequency domain. The proposed learning control scheme is structurally simple and computationally efficient since it is independent joint control depending only on locally measured variables and it does not involve the computation of complicated nonlinear manipulator dynamics. Moreover, it is capable of canceling the unmodeled dynamics of the manipulator without even the parametric model. Several important aspects of the learning scheme inherent in the frequency-domain design are discussed and the control performance is demonstrated through computer simulations.

  • PDF

Locally optimal trajectory planning for redundant robot manipulators-approach by manipulability (여유 자유도 로봇의 국부 최적 경로 계획)

  • Lee, Ji-Hong;Lee, Han-Gyu;Yoo, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1136-1139
    • /
    • 1996
  • For on-line trajectory planning such as teleoperation it is desirable to keep good manipulability of the robot manipulators since the motion command is not given in advance. To keep good manipulability means the capability of moving any arbitrary directions of task space. An optimization process with different manipulability measures are performed and compared for a redundant robot system moving in 2-dimensional task space, and gives results that the conventional manipulability ellipsoid based on the Jacobian matrix is not good choice as far as the optimal direction of motion is concerned.

  • PDF

Workspace and Force-Moment Transmission of a Parallel Manipulator with Variable Platform (가변형 병렬기구에 대한 작업공간과 힘/모멘트 전달 특성 해석)

  • Kim Byoung-Chang;Lee Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.138-144
    • /
    • 2006
  • Kinematic and dynamic characteristics of a Stewart platform based parallel manipulators are fixed once they are constructed. Thus parallel manipulators with various configurations are required to meet a variety of applications. In this research a parallel manipulator with variable platform (PMVP) has been developed, in which the length of the arm linking the platform center to the platform-leg contact point can be varied by an actuator. The workspace of the PMVP is larger than that of a traditional Stewart platform and especially the range in which the maximum orientation angles can be maintained is significantly expanded. Furthermore, the characteristics of force and moment transmission between the legs and platform can be adjusted to meet the requirements of various tasks. Kinematic and dynamics analysis was performed to verify the usefulness of the PMVP and the actual hardware was built to demonstrate the feasibility.

TRAJECTORY CONTROL OF ROBOT MANIPULATORS USING VSS THEDORY smoothing modification : SMOOTHING MODIFICATION

  • Hideki Hashimoto;Sim, Kwee-Bo;Jianxin Xu;F. Harashima
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.898-904
    • /
    • 1987
  • A new control algorithm using the VSS theory is developed for accurate trajectory control of robot manipulators. This paper focuses on the implementation of VSS controller with smoothing laws in the design of effective tracking control for robotic arms. The VSS controller for multi-linkage robot arm is realized using balance condition and its simplification which possesses powerful smoothing capability to reduce or even remove undesirable chattering and meanwhile keep the robust characteristic to reject system uncertainties. The design principle of selecting different smoothing methods, which aims at achieving trade-off between smoothing and robust behaviors while considering the actual system constraints, is also given and further confirmed through experimental results.

  • PDF

Obstacle Avoidance of Redundant Manipulator Using Potential and AMSI

  • Ikeda, K.;Minami, M.;Mae, Y.;Tanaka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.740-745
    • /
    • 2005
  • This study is intended to build a controller of redundant manipulators with the simultaneous abilities of trajectory tracking and obstacle avoidance without any preparations of path planning to achieve full automation even for one production of one kind, while keeping the avoidance ability high and keeping its shape away from object to reduce the possibility that the manipulator crashes to the object. To evaluate the avoidance ability of the intermediate link, we proposed a scalar value of Avoidance Manipulability Shape Index(AMSI), which is independent of the obstacle's shape. On the other hand, the danger to crash to the obstacle is depending on the shape of the obstacle, which could be evaluated by the potential field set around the obstacle. This paper proposes control method of the manipulator's shape based on the AMSI to simultaneously avoid obstacles and keep the avoidance ability high with potential.

  • PDF

Compliance Paradigms for Kinematically Tedundant Manipulators

  • Park, Jonghoon;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.914-919
    • /
    • 1993
  • The kinematic resolutions of redundancy is addressed in this paper. The governing equation for quasistatic behavior of compliance governed redundant manipulators is formulated and the repeatable property of the manipulator is proposed. Then the compliance paradigm is used to resolve the redundancy in a repeatable way. The compliance paradigm is one under which the controller simulates the imaginary manipulator which is governed to move by real joint stiffness. The equation is expressed as the weighted pseudoinverse with the configuration dependent weighting matrix. Algorithmic singularities arisen from this scheme are also discussed.

  • PDF