• Title/Summary/Keyword: Manganese Oxides

Search Result 119, Processing Time 0.021 seconds

Utilization of Mineral Oxides to Attenuate Mn-EDTA and Fluoride (산화광물을 이용한 수중의 망간-EDTA, 불소 제거)

  • 현재혁;남인영
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.51-60
    • /
    • 1996
  • Removal of Mn-EDTA complex and fluoride by use of hematite and ferrite, which are the by-product to be disposed of as industrial wastes, was investigated. For the comparison of removal rate, Na-bentonite known as excellent absorbent of inorganic contaminants was included in the experiments. As the results of batch mode experiments, for manganese, ferrite-A revealed 48∼65% of removal capacity, ferrite-B 46∼57%, hematite 17∼26%, while Na-bentonite showed 10∼23% of removal, depending on the initial concentration. Meanwhile, in case of fluoride : hematite revealed 53 ∼63% of removal : ferrite-A 54∼63 %, while ferrite-B did 20∼38 %. From the results, it can be postulated that the capacity of hematite and ferrite to attenuate inorganic pollutants, especially when they form complex ions, is superior to that of Na-bentonite. Consequently, the mixing of such oxide minerals with Na-bentonite will reinforce the function of Na-bentonite, especially in the undergroud liner aspect.

  • PDF

Supercapacitive Properties of Carbon-Nano Fiber/MnO2 Composite Electrode (나노탄소섬유/MnO2 복합전극의 초고용량 캐폐시터 특성)

  • Lee, Byung Jun;Yoon, Yu Il;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.94-98
    • /
    • 2008
  • In order to improve the specific capacitance of amorphous hydrous manganese oxide ($MnO_2$) for supercapacitors, it is made into composites with vapour-grown carbon nanofibers (VGCF) having the VGCF ratio as 40 wt% in the composites. The electrochemical properties of these composites are investigated in 1.0 M $Na_2SO_4$ by cyclic voltammetry (CV), impedance measurements and chronopotentiometric charger/discharger. The composite with 40 wt% VGCF shows the superior electrochemical performance, whose specific capacitance (based on the mass of $MnO_2$, $0.8mg/cm^2$) is 380 F/g at 20 mV/s and 230 F/g at 500 mV/s. Also, the cycle-life testing of this electrode carried out for 3,000 charge/discharge cycles at $2.0mA/cm^2$ shows 97% capacitance retention.

A Study on the Liquid Phase Sintering of Tungsten-Nickel-Manganese alloy (텅스텐-니켈-망간 합금의 액상소결에 관한연구)

  • Hong, Mun-Hui;Lee, Seong;Roh, Jun-Ung;Paik, Un-Hyeong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.25-25
    • /
    • 1995
  • Liquid phase sintering of 90W-6Ni-4Mn alloy has been investigated as functions of sintering atmosphere, heating rate, and reduction temperature. The present work accounts for the thermodynamic oxidatiodreduction reactions of constituent powders of W, Ni and Mn. By discounting these reactions, the previous investigations would obtain only the alloy with large pores and the lowered relative sintered density, by the liquid phase sintering under a dry hydrogen atmosphere. the sintering cycle consisted of a rapid heating to reduction temperatures under high purity nitrogen atmosphere, and holding for 4 hours and sintering at $1260^{\circ}C$ for 1 hour under a dry hydrogen gas. The relative density of the sintered alloy increased with increasing heating rate. As the reduction temperature increased, the relative density increased to the lm theotical density at the duction temture above $1150^{\circ}C$. The mimsturcatre of sintered alloys has been analysed by a scanning election microscope. The sintered density was compared with those obtained from the other investigators. It was found that the reduction $1150^{\circ}C$ results in the lowered densification of 90W-6Ni-4Mn alloy. This is caused by the fact that reducing reactions of W and Ni oxides contained in W an Ni powders concomitantly leads to oxidizing reaction of Mn powder the oxidized Mn is hardly reduced at sintering temperature and thereby remains large pores in the alloy. It is concluded that the W-Ni-Mn alloy with full density can be obtained by the precise control of atmosphere, heating rate, and sintering temperature.

  • PDF

Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells (리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성)

  • Jang, Dong H.;Oh, Seung M.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.122-134
    • /
    • 1998
  • In this review, we describe the electrochemical properties of spinel-type lithium manganese oxides $(Li_xMn_2O_4)$ and their failure modes encountered in 4 V lithium rechargable cells. The long-term cyclability (reversibility) of spinel electrodes is determined partly by the purity, size and distribution of spinel particles, and also by the microstructure of electrode plates. A proper selection of electrolytes is another important task in cyclability enhancements. In the spinel preparation, impurity formation and cation mixing should be minimized. The carbon content in composite cathodes should also be minimized to the extent where the cell polarization does not bring about adverse effects on cell performances. The binder content should be optimized on the basis of dispersion of component materials and mechanical strength of the plates. Cathodic capacity losses arising from solvent oxidation and spinel dissolution can be mitigated by using electrolytes composed of carbonates and/or fluorine-containing lithium salts. The carbon additives may be selected after a trade-off between the cell polarization in composite cathodes and the solvent oxidation on carbon surface.

  • PDF

Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction (수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구)

  • PARK, JI HYE;IM, HYO BEEN;HWANG, RA HYUN;BAEK, JEONG HUN;KOO, KEE YOUNG;YI, KWANG BOK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

Investigation on Reaction Products From Oxidative Coupling Reactions of 1-Naphthol By Manganese Oxide (망간산화물에 의한 1-Naphthol의 산화-결합 반응에 따른 반응산물 연구)

  • Lim, Dong-Min;Lee, Doo-Hee;Kang, Ki-Hoon;Shin, Hyun-Snag
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.989-996
    • /
    • 2007
  • In this study, abiotic transformation of 1-naphthol(1-NP) via oxidative-coupling reaction and its reaction products were investigated in the presence of Mn oxides. The reaction products were characterized for their relative polarity using solvent extraction experiment and reverse-phase HPLC, and for structure using CCMS and LC/MS, and for absorption characteristics using UV-Vis spectrometry. The reaction products present in aqueous phase were more polar than parent naphthol and comprised of 1,4-naphthoquinon(1,4-NPQ) and oligomers such as dimers and trimers. Hydrophilic component present in water phase after solvent$(CH_2Cl_2)$ extractions was identified as naphthol polymerized products having molecular weight(m/z) ranging from 400 to 2,000, and showed similar UV-Vis. absorption characteristics to that of foil fulvic acid. Transformation of 1,4-NPQ, which is non-reactive to Mn oxide, to the polymerized products via cross-coupling reaction in the presence of 1-NP was also verified. In this experimental conditions(20.5 mg/L, 1-NP, 2.5 g/L $MnO_2$, pH 5), the transformation of 1-NP into the oligomers and polymerized products were about 83% of initial 1-NP concentrations, and more than 30% of the reaction products was estimated to be water insoluble fractions, not extracted by $H_2O$ methanol. Results from this study suggest that Mn oxide-mediated treatment of naphthol contaminated soils can achieve risk reduction through the formation of oligomers md polymer precipitation.

Applied Mineralogy for the Conservation of Dinosaur Tracks in the Goseong Interchange Area (35번 고속도로 고성 교차로 지역 공룡발자국의 보존을 위한 응용광물학적 연구)

  • Jeong Gi Young;Kim Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • Cretaceous sedimentary rocks bearing dinosaur tracks in the Goseong interchange area were studied for their conservation and public display in the aspect of applied mineralogy. Black clay layers alternate with silt layers in the sedimentary rocks. The verical and horizontal fissures are commonly filled with calcite veinlets, supergenetic iron and manganese oxides. The rocks are composed of quartz, albite, K-feldspar, calcite, chlorite, illite, muscovite, and biotite, with minor apatite and rutile. Silt layers are relatively rich in calcite and albite, whereas clay layers are abundant in quartz, illite, and chlorite. Al, Fe, Mg, K, Ti, and P are enriched in the clay layers, while Ca, Na, and Mn in silt. Most of trace elements including V, Cr, Co, Ni, Cs, Zr, REE, Th, and U are enriched in clay layers. Inorganic carbon are present in silt layers as calcite, while organic carbon in black clay layers. The black clay layers were partly altered to yellow clay layers along the fissures, simultaneously with the decrease of organic carbon. Selective exfoliation of clay-rich black and yellow clay layers, calcite matrix of silt layers and calcite infillings of fissures are estimated as the major weakness potentially promoting chemical and physical degradation of the track-bearing rock specimens.

Removal of TNT Reduction Products via Oxidative-Coupling Reaction Using Manganese Oxide (망간산화물을 이용한 TNT 환원부산물의 산화-결합반응에 의한 제거 연구)

  • Kang, Ki-Hoon;Lim, Dong-Min;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.476-485
    • /
    • 2005
  • In this study, abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, $k_{surf}$, were determined. As expected, $k_{surf}$ of diaminonitrotoluenes (DATs) ($1.49{\sim}1.91\;L/m^2{\cdot}day$) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) ($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$) due to the increased number of amine group. In addition, by comparing the value of $k_{surf}$ between DNTs or DATs, amino group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using $Fe^0$ followed by oxidative coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

Oxidative Transformation of 1-Naphthol Using Manganese Oxide (망간산화물을 이용한 1-Naphthol의 산화 제거 연구)

  • Lim, Dong-Min;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, removals of 1-naphthol by oxidative-coupling reaction using birnessite, one of natural Mn oxides present in soil, was investigated in various experimental conditions(reaction time, Mn oxide loadings, pH, etc). Removal efficiency of 1-naphthol by birnessite was high in all the experimental conditions, and UV-vis. and mass spectrometric analyses on the supernatant after reaction confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Pseudo-first order rate constants, f, for the oxidative transformation of 1-naphthol by birnessite was derived from the kinetic experiments under various amount of birnessite loadings, and using the observed pseudo-first order rate constants with respect to birnessite loadings, surface area-normalized specific rate constant, $k_{surf}$ was also determined to be $9.31{\times}10^{-4}(L/m^2{\cdot}min)$ for 1-naphthol. In addition, the oxidative transformation of 1-naphthol was found to be dependent on solution pH, and the pseudo-first order rate constants were increased from 0.129 at pH 10 to 0.187 at pH 4.

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF