Removal of TNT Reduction Products via Oxidative-Coupling Reaction Using Manganese Oxide

망간산화물을 이용한 TNT 환원부산물의 산화-결합반응에 의한 제거 연구

  • Kang, Ki-Hoon (Technology Research Institute, Daelim Industrial Co., Ltd.) ;
  • Lim, Dong-Min (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • 강기훈 (대림산업(주) 기술연구소) ;
  • 임동민 (서울산업대학교 환경공학과) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Published : 2005.05.31

Abstract

In this study, abiotic transformation of TNT reduction products via oxidative-coupling reaction was investigated using Mn oxide. In batch experiments, all the reduction products tested were completely transformed by birnessite, one of natural Mn oxides present in soil. Oxidative-coupling was the major transformation pathway, as confirmed by mass spectrometric analysis. Using observed pseudo-first-order rate constants with respect to birnessite loadings, surface area-normalized specific rate constants, $k_{surf}$, were determined. As expected, $k_{surf}$ of diaminonitrotoluenes (DATs) ($1.49{\sim}1.91\;L/m^2{\cdot}day$) are greater about 2 orders than that of dinitroaminotoluenes (DNTs) ($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$) due to the increased number of amine group. In addition, by comparing the value of $k_{surf}$ between DNTs or DATs, amino group on ortho position is likely to be more preferred for the oxidation by birnessite. Although cross-coupling of TNT in the presence of various mediator compounds was found not to be feasible, transformation of TNT by reduction using $Fe^0$ followed by oxidative coupling using Mn oxide was efficient, as evaluated by UV-visible spectrometry.

본 연구에서는 망간산화물을 이용하여 TNT 환원부산물들의 산화-결합반응(oxidative-coupling reaction)에 의한 변환반응을 조사하였다. 회분식 실험으로부터 일반 토양중에 존재하는 망간산화물의 하나인 버네사이트(birnessite)에 의해 실험에 사용한 TNT 환원부산물들이 완전히 변환되고 있음을 확인하였다. 또한 이러한 변환의 주요 원인은 산화-결합반응을 통한 중합체 형성에 기인한 것임을 M/S 분석을 통해 확인할 수 있었다. 각 TNT 환원부산물을 대상으로 버네사이트의 양에 따른 반응속도 실험을 통해 유사-일차 반응상수를 구하였고, 이로부터 버네사이트 비표면적에 대해 표준화한 반응상수, $k_{surf}$를 도출하였다. 아민기를 두 개 가지고 있는 diaminonitrotoluenes (DATs)의 $k_{surf}$값($1.49{\sim}1.91\;L/m^2{\cdot}day$)이 아민기를 하나 가지고 있는 dinitroaminotoluenes (DNTs)의 $k_{surf}$값($1.15{\times}10^{-2}{\sim}2.09{\times}10^{-2}\;L/m^2{\cdot}day$)에 비해 약 $10^2$배 정도 큼을 확인할 수 있었다. 또한 DNTs 혹은 DATs들간의 $k_{surf}$값을 비교함으로써 ortho 위치에 있는 아민기가 para 위치의 아민기에 비해 버네사이트에 의한 산화반응에 유리함을 확인할 수 있었다. TNT가 다양한 반응매개체(mediator)의 존재 하에서 상호결합 반응(cross-coupling)에 의해 제거되기는 어려우나, $Fe^0$ 및 망간산화물에 의한 연속처리로부터 TNT를 효과적으로 처리할 수 있음을 확인하였다.

Keywords

References

  1. Pennington, J. C. and Patrick, W. H., Jr., 'Adsorption and desorption of 2,4,6-trinitrotoluene by soils,' J Environ. Qual., 19, 559-567(1990) https://doi.org/10.2134/jeq1990.00472425001900030034x
  2. Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D., and Powers, W. L., 'Removal of TNT and RDX from water and soil using iron metal,' Environ. Pollut., 97, 55-64(1997) https://doi.org/10.1016/S0269-7491(97)00081-X
  3. Rieger, P.-G. and Knackmuss, H.-J., 'Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related compounds in contaminated soil,' Biodegradation of Nitroaromatic Compounds, Spain, J. C., (Ed.), Plenum Press, New York, pp. 1-18(1995)
  4. Roberts, D. K., Kaake, R. H., Funk, S. B., Crewford, D. L., and Crawford, R. L., 'Field-scale anaerobic bioremediation of dinoseb-contaminated soils,' Biotreatment of Industrial and Hazardous Wastes, Levin, M. A., and Gealt, M. A. (Eds.), McGraw-Hill, New York, pp. 219-244(1993)
  5. Funk, S. B., Crawford, D. L., Crawford, R. L., Mead, G., and Davis-Hoover, W., 'Full scale anaerobic bioremediation of trinitrotoluene (TNT) contaminated soil. A US EPA SITE program demonstration,' Appl. Environ. Microbiol., 51, 625-633(1995)
  6. Pennington, J. C., Hayes, C. A., Meyers, K. F., Ocham, M., Gunnison, D., Felt, D. R., and McCormick, E. F., 'Fate of 2,4,6-trinitrotoluene in a simulated compost system,' Chemosphere, 30, 429 - 438(1995) https://doi.org/10.1016/0045-6535(94)00422-Q
  7. Arienzo, M., 'Oxidizing 2,4,6-trinitrotoluene with pyrite-$H_2O_2$ suspensions,' Chemosphere, 39, 1629-1638(1999) https://doi.org/10.1016/S0045-6535(99)00061-2
  8. Venkatadri, R. and Peters, R. W., 'Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis,' Hazard. Waste Hazard. Mater., 2, 107-149(1993)
  9. Zappi, M. E., Miller, J., Toro, E., Cerar, R., and O'Donnell, R., HSRC-WERC, Joint Conference on the Environment, Abstracts Book, Albuquerque, New Mexico, May 21-3, pp. 13-14(1996)
  10. Agrawal, A. and Tratnyek, P. G., 'Reduction of nitro aromatic compounds by zero-valent iron metal,' Environ. Sci. Technol., 30, 153 -160(1996) https://doi.org/10.1021/es950211h
  11. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid,' Water Res., 36, 4907-4915(2002) https://doi.org/10.1016/S0043-1354(02)00198-7
  12. Shindo, H. and Huang, P. M., 'Role of Mn(lV) oxide in abiotic formation of humic substances in the environment,' Nature (London), 298, 363 - 365(1982) https://doi.org/10.1038/298363a0
  13. Shindo, H. and Huang, P. M., 'Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments,' Nature (London), 308, 57 - 58(1984) https://doi.org/10.1038/308057a0
  14. McKenzie, R. M., 'The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese,' Miner. Mag., 38, 493 - 502(1971) https://doi.org/10.1180/minmag.1971.038.296.12
  15. Bollag, J.-M., 'Decontaminating soil with enzymes: An in situ method using phenolic and anilinic compounds,' Environ. Sci. Technol., 26, 1876-1881(1992) https://doi.org/10.1021/es00034a002
  16. Dec, J. and Bollag, J.-M., 'Dehalogenation of chlorinated phenols during oxidative coupling,' Environ. Sci. Technol., 28, 484-490(1994) https://doi.org/10.1021/es00052a022
  17. Roberts, T., 'Non-extractable pesticide residues in soils and plants,' Pure Appl. Chem., 56, 945 -956(1984) https://doi.org/10.1351/pac198456070945
  18. Thorn, K. A., Pettigrew, P. J., Golbenberg, W. S., and Weber, E. J., 'Covalent binding of aniline to humic substances. 2. $^{15}N$ NMR studies of nucleophilic addition reactions,' Environ. Sci. Technol., 30, 2764 - 2775(1996) https://doi.org/10.1021/es9509339
  19. Dec, J., Haider, K., Benesi, A., Rangaswamy, V., Schaffer, A., Plucken, U., and Bollag, J.-M., 'Analysis of soil-bound residues of 13C-labeled fungicide cyprodinil by NMR spectroscopy,' Environ. Sci. Technol., 31, 1128 - 1135(1997) https://doi.org/10.1021/es960631m
  20. Stone, A. T. and Morgan, J. J., 'Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. I. Reaction with hydroquinone,' Environ. Sci. Technol., 18, 450-456(1984) https://doi.org/10.1021/es00124a011
  21. McBride, M. B., 'Oxidation of 1,2- and 1,4-dihydroxybenzene by birnessite in acidic aqueous suspension,' Clays Clay Miner., 37, 479-486(1989) https://doi.org/10.1346/CCMN.1989.0370514
  22. Wang, M. C. and Huang, P. M., 'Significance of Mn (IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments,' Sci. Total Environ., 113, 147 -157 (1992) https://doi.org/10.1016/0048-9697(92)90022-K
  23. Majcher, E. H., Chorover, J., Bollag, J.-M., and Huang, P. M. 'Evolution of C02 during birnessite-induced oxidation of $^{14}$C-labeled catechol,' Soil Sci. Soc. Am. J, 64, 157 - 63(2000) https://doi.org/10.2136/sssaj2000.641157x
  24. Pizzigallo, M. D. R., Ruggiero, P., Crecchio, C., and ininni, R., 'Manganese and iron oxides as reactants for oxidation of chlorophenols,' Soil Sci. Soc. Am. J, 59, 444 - 452(1995) https://doi.org/10.2136/sssaj1995.03615995005900020025x
  25. Dec, J., Haider, K., and Bollag, J.-M., 'Release of substituents from phenolic compounds during oxidative coupling reactions,' Chemosphere, 52, 549 - 56(2003) https://doi.org/10.1016/S0045-6535(03)00236-4
  26. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite,' Water Res., 38, 2737-2745(2004) https://doi.org/10.1016/j.watres.2004.03.018
  27. Call, H. and Mucke, I., 'History, overview and application of mediated lignolytic systems, especially laccasemediator systems (Lignozyms-Process),' J Biotechnol., 53, 163-202(1997) https://doi.org/10.1016/S0168-1656(97)01683-0
  28. Stevenson, F. J., Humus Chemistry, John Wiley and Sons Inc., New York, pp. 303 - 324(1994)
  29. Silverstein, R. M., Webster, F. X., Spectrometric Identification of Organic Compounds, 6th Ed., John Wiley & Sons(1997)
  30. Weber, Jr., W. J. and Huang Q., 'Inclusion of persistent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling,' Environ. Sci. Technol., 37, 4221-4227(2003) https://doi.org/10.1021/es030330u