• Title/Summary/Keyword: 영가 철

Search Result 78, Processing Time 0.029 seconds

Research on Remediation of Trichloroethylene using Zero Valent Iron Bipolar Packed Bed Electrodes (영가철 충진 복극전해조를 이용한 TCE 정화기법에 관한 연구)

  • Park, Yu-Ri;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.85-91
    • /
    • 2012
  • Permeable Reactive Barriers (PRBs) using zero valent iron (ZVI, $Fe^0$) is a promising technology for in-situ remediation of trichloroethylene (TCE) forming dense non aqueous phase liquid (DNAPL). The objective of this study is to develop an enhanced treatment method of trichloroethylene-contaminated groundwater using ZVI packed bed with direct current (D.C.). A column experiment was performed to investigate degradation efficiency of TCE that was performed in three different combination of control (only sand), ZVI column (ZVI:sand, packing ratio 1:2(v/v)) and bipolar column (ZVI:sand=1:2(v/v) with electric current) in the test columns. As the results of this study, the degradation efficiency of TCE was improved with simultaneous application of both bipolar column compared to that used ZVI column. Because ZVI particles are isolated and individual particles act like small electrodes. In this experiment, it was indicated a basic material for application of bipolar packed bed as electro-PRBs that was effective degradation of TCE.

Reduction Efficiency of Cr(VI) in Aqueous Solution by Different Sources of Zero-Valent Irons (수용액 중 영가 철(Zero-Valent Iron)의 특성에 따른 Cr(VI)의 환원 효율 비교)

  • Yang, Jae-E.;Kim, Jong-Sung;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.203-209
    • /
    • 2005
  • Objective of this research was to assess the effectiveness of the different sources of the zero-valent irons (ZVIs) on the reduction of the toxic Cr(VI) to the nonhazardous Cr(III) in an aqueous solution. The physical and chemical properties of the six ZVIs were determined. Particle size and specific surface area of the ZVIs were in the ranges of $85.55{\sim}196.46{\mu}m\;and\;0.055{\sim}0.091m^2/g$, respectively. Most of the ZVIs contained Fe greater than 98% except for J (93%) and PU (88%). Reduction efficiencies of the ZVI for Cr(VI) reduction were varied with kinds of ZVIs. The J and PU ZVIs reduced 100% and 98% of Cr(VI) in the aqueous solution, respectively, within 3 hrs of reaction. However, PA, F, Sand J1 reduced 74, 65, 29 and 11% of Cr(VI), respectively, after 48 hrs. The pH of the reacting solution was rapidly increased from 3 to $4.34{\sim}9.04$ within 3 hrs. The oxidation-reduction potential (Eh) of the reacting solution was dropped from 600 to 319 mV within 3 hrs following addition of ZVIs to the Cr(VI) contaminated water. The capability of ZVIs for Cr(VI) reduction was the orders of PU > J > PA > F > S > J1, which coincided with the capacities to increase the pH and decrease the redox potentials. Results suggested that the reduction of Cr(VI) to Cr(III) was derived from the oxidation of the ZVI in the aqueous solution.

A Study on Transport Characteristics of CMC-modified Zero Valent Iron (ZVI) Nanoparticles in Porous Media (다공성 매질내에서 CMC로 표면개질된 영가철 나노입자의 이동 특성에 관한 연구)

  • Cho, Yun-Chul;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.101-107
    • /
    • 2009
  • Carboxymethyl cellulose (CMC) as stabilizer is expected to facilitate in-situ delivery of zero-valent iron (ZVI) nanoparticles in a contaminated aquifer because it increases dispersity of ZVI nanoparticles. This work investigated the transport of CMC-stabilized ZVI nanoparticles (CMC-Fe) using column breakthrough experiments. The ZVI nanoparticles (100 mg/L Fe) were transportable through sand porous media. In contrast, non-stabilized ZVI nanoparticles rapidly agglomerate in solution and are stopped in sand porous media. At pH 7 of solution approximately 80% CMC-Fe were eluted. When the pH of solution is below 5, 100% CMC-Fe were eluted. These results suggest that the mobility of CMCFe was increased as pH decreases. In the mobility test under different ionic strengths using $Na^+$ and $Ca^{2+}$ ions, there was no signigficant difference in the mobility of CMC-Fe. Also, in the experiments of effect of clay and natural organic mater (NOM) on the mobility of ZVI, there was no significant difference in the mobility of CMC-Fe not only between 1 and 5% clay, but 100 and 1000 mg/L NOM. The results from this work suggests that the CMC-Fe nanoparticles could be easily delivered into the subsurface over a broad range of ionic strength, clay and NOM.

Assessment of Sludge Solubilization by Aeration and Zero-valent Iron As a Pre-treatment for Anaerobic Digestion (공기주입과 영가철을 이용한 하수슬러지 가용화 연구)

  • Kim, Yong-Jun;Park, Jin-Kyu;Tameda, Kazuo;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • The reaction of zero-valent iron (ZVI) with oxygen can produce reactive oxidants capable of oxidizing organic compounds. Thus, the aim of this study was to investigate the effect of pre-treatment on sludge solubilization by ZVI and aeration. The results demonstrated that the aeration pre-treatment with ZVI method was more effective than the only aeration for improving sludge solubilization, indicating that ZVI increased the extent of sludge solubilization. In addition, removal rate of $NH_3-N$ by ZVI and aeration was found to be 34%, while only aeration was 24%. Thus, ZVI and aeration can be employed as an efficient pre-treatment option to achieve higher sludge solubilization and decrease the toxic effect of $NH_3-N$ for sludge digestion.

The Effect of Fumed Silica on Nitrate Reduction by Zero-valent Iron (흄드 실리카가 영가철에 의한 질산성질소 환원에 미치는 영향)

  • Cho, Dong-Wan;Jeon, Byong-Hun;Kim, Yong-Je;Song, Ho-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.599-608
    • /
    • 2010
  • The effect of silica(fumed) on nitrate reduction by zero-valent iron(ZVI) was studied using batch experiment. The reduction of nitrate was tested in three different aqueous media including de-ionized water, artificial groundwater and real groundwater contaminated by nitrate. Kinetics of nitrate reduction in groundwater were faster than those in de-ionized water, and first-order rate constant($k_{obs}$) of ZVI/silica(fumed) process was about 2.5 time greater than that of ZVI process in groundwater. Amendment of Silica(fumed) also decreased ammonium presumably through adsorption on silica surface. The pHs in all processes increased due to oxidation of ZVI, but the increase was lower in groundwater due to buffering capacity of groundwater. The result also showed amount of reduced nitrate increased as initial nitrate concentration increased in groundwater. Separate adsorption isotherm experiments indicated that fumed silica itself had some degree of adsorption capacity for ammonium. The overall results indicated that silica(fumed) might be a promising material for enhancing nitrate reduction by ZVI.

Mechanism and Adsorption Capacity of Arsenic in Water by Zero-Valent Iron (수용액 중 영가 철의 비소흡착 및 반응기작 구명)

  • Yoo, Kyung-Yoal;Ok, Yong-Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • Objective of this research was to evaluate optimal conditions of arsenic adsorption in water by zero-valent iron (ZVI). Batch experiment showed that adsorption of arsenic by ZVI followed a Langmuir isotherm model. The masses of As(V) adsorbed onto ZVI were increased as decreasing pH of the reacting solution (pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$) and as increasing the temperature ($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, 35 : $1.93^{\circ}C$ mg As/g $Fe^0$). The SEM and EDS (energy dispersive X-ray spectrometer) analysis of morphology and structure of ZVI before and after reacting with arsenic in water revealed that a relatively smooth and large surface of ZVI was transformed into a coarse and small surface particle after the reaction. The EDS spectra on the chemical composition of ZVI demonstrated that arsenic was incorporated into ZVI by adsorption mechanism. The XRD analysis also identified that the only peak for $Fe^0$ in the ZVI before the reaction and confirmed that $Fe^0$ was transformed into $Fe_2O_3$ and FeOOH, and As into $FeAsO_4{\cdot}2H_2O$.

Screening of Zero-Valent Metal for the Removal of High Concentration PCE and 1,1,1 TCA (고농도 PCE 및 1,1,1 TCA 제거를 위한 영가금속 선정)

  • Kwon, Soo-Youl;Kim, Young
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Chlorinated aliphatic hydrocarbons (CAHs) such as tetrachloroethylene (PCE), 1,1,1-trichloroethane (1,1,1-TCA) are the contaminants most frequently found in soil and groundwater. They have a potential to be toxic to and persistent in environment. This study is focused on selection of zero-valent metal and ores for the removal of high concentration PCE or 1,1,1-TCA and mixture of two compound. For the screening of suitable metals, we measured dechlorination rate, removal capacities and economics by using batch reactor test. This results suggest that removal rate and dechlorination of high quality iron and zinc are higher than slag and nature ores like zinc and manganese. Among nature ores, zinc ores(64% purity) have highest removal capacities. And in economics zinc ores is 10 times better than high quality metal tested. We conclude zinc ore is most suitable metal for the removal of PCE or 1,1,1-TCA.

Durability Extension of Fe(0) Column with Shewanella Algae BrY on TCE Treatment (Shewanella algae BrY를 이용한 영가철 칼럼의 TCE 처리 수명연장)

  • Chae, Heehun;Bae, Yeunook;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.41-48
    • /
    • 2007
  • Zevo-valent iron (ZVI) has been widely used in permeable reactive barriers for reducing organic contaminants, such as trichloroethylene (TCE). The rapid reaction time, however, leads to decrease in reactivity and availability of ZVI. Shewanella algae BrY, a strain of dissimilatory iron reducing bacteria, can reduce the oxidized Fe (III) to Fe (II) and reduced Fe (II) can be reused to reduce the contaminant. The effect of Shewanella algae BrY on the reduction of the oxidized ZVI column and further TCE removal in the contaminated groundwater were studied at different flow rates and TCE input concentrations in this study. High input concentration of TCE and flow rate increase the amount of input contaminant and make to lower the effect of reduction by Shewanella algae BrY. Specially, the fast flow rate inhibits the direct contact and implantation on the surface of iron. The reduction of oxidized iron reactive barrier by Shewanella algae BrY can decrease the decreation of duration of PRBs by the precipitation of oxidized iron produced by dechlorination of TCE.

  • PDF

Continuous Nitrate Removal using Bipolar ZVI Packed Bed Electrolytic Cell (영가철(Fe0) 충진 복극전해조를 이용한 질산성질소의 연속식 제거 연구)

  • Jeong, Joo-Young;Kim, Han-Ki;Shin, Ja-Won;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.79-84
    • /
    • 2012
  • Nitrate is a common contaminant in groundwater aquifer. The present study investigates the performance of the bipolar zero valent iron (ZVI, $Fe^0$) packed bed electrolytic cell in removing nitrate in different operating conditions. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous experiments for the simulated wastewater (contaminated groundwater, initial nitrate about 30 mg/L as N and electrical conductivity about 300 ${\mu}S/cm$), over 99% removal of nitrate was achieved in the applied voltage 600 V and at the flow rate of 20 mL/min. The optimum packing ratio (v/v) and flow rate were determined to be 1:1~2:1 (silica sand to ZVI), 30 mL/ min respectively. Effluent pH was proportional to nitrate influx concentration, and ammonia which is the final product of nitrate reduction was about 60% of nitrate influx. Magnetite was observed on the surface of the used ZVI as major oxidation product.