• Title/Summary/Keyword: Mammary epithelial cells

Search Result 118, Processing Time 0.03 seconds

Inductional Expression of the Human Lactadherin Gene in Mouse Mammary Epithelial Cells

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Teoan
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.94-94
    • /
    • 2002
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinomas and may prevent symptomatic rotavirus infections. In this study, under the control of mouse whey acidic protein (WAP) promoter, the expression pattern of lactadherin (Ltd) in lactogenic hormone-dependent mouse mammary epithelial cell line HC11 were tested. pLNWLtd construct containing 2.4 kilobases of the WAP promoter and 1.5 kilobases of human lactadherin gene was stably transfered into HC11 cells using retroviral vector system. Integration and expression level of the transgene was estimated using PCR and RT-PCR, respectively. Prominent induction of Ltd gene under the WAS promoter was accomplished in the presence of insulin, hydrocortisone and prolactin, while induction with insulin alone resulted in lower expression. Our results demonstrate that the expression of the transgene is increased by synergistic effect of several lactogenic hormones, including insulin, hydrocortisone, and prolactin.

  • PDF

Mammary alveolar cell as in vitro evaluation system for casein gene expression involved in glucose level

  • Heo, Young Tae;Ha, Woo Tae;Lee, Ran;Lee, Won-Young;Jeong, Ha Yeon;Hwang, Kyu Chan;Song, Hyuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.878-885
    • /
    • 2017
  • Objective: Glucose is an essential fuel in the energy metabolism and synthesis pathways of all mammalian cells. In lactating animals, glucose is the major precursor for lactose and is a substrate for the synthesis of milk proteins and fat in mammary secretory (alveolar) epithelial cells. However, clear utilization of glucose in mammary cells during lactogenesis is still unknown, due to the lack of in vitro analyzing models. Therefore, the objective of this study was to test the reliability of the mammary alveolar (MAC-T) cell as an in vitro study model for glucose metabolism and lactating system. Methods: Undifferentiated MAC-T cells were cultured in three types of Dulbecco's modified Eagle's medium with varying levels of glucose (no-glucose: 0 g/L, low-glucose: 1 g/L, and high-glucose: 4.5 g/L) for 8 d, after which differentiation to casein secretion was induced. Cell proliferation and expression levels of apoptotic genes, Insulin like growth factor-1 (IGF1) receptor, oxytocin receptor, ${\alpha}S1$, ${\alpha}S2$, and ${\beta}$ casein genes were analyzed at 1, 2, 4, and 8 d after differentiation. Results: The proliferation of MAC-T cells with high-glucose treatment was seen to be significantly higher. Expression of apoptotic genes was not affected in any group. However, expression levels of the mammary development related gene (IGF1 receptor) and lactation related gene (oxytocin receptor) were significantly higher in the low-glucose group. Expressions of ${\alpha}S1-casein$, ${\alpha}S2-casein$, and ${\beta}-casein$ were also higher in the low-glucose treated group as compared to that in the no-glucose and high-glucose groups. Conclusion: The results demonstrated that although a high-glucose environment increases cell proliferation in MAC-T cells, a low-glucose treatment to MAC-T cells induces higher expression of casein genes. Our results suggest that the MAC-T cells may be used as an in vitro model to analyze mammary cell development and lactation connected with precise biological effects.

miR-380-3p promotes β-casein expression by targeting αS1-casein in goat mammary epithelial cells

  • Ning Song;Jun Luo;Lian Huang;Xiaoying Chen;Huimin Niu;Lu Zhu
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1488-1498
    • /
    • 2023
  • Objective: αS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC). Methods: αS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC. Results: Compared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances β-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes β-casein abundance through target gene αS1-casein, and activates β-casein transcription by enhancing the binding of STAT5 to β-casein gene promoter region. Conclusion: miR-380-3p decreases αS1-casein expression and increases β-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.

Effect of hyperthermia on cell viability, amino acid transfer, and milk protein synthesis in bovine mammary epithelial cells

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Hu, Rui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.110-122
    • /
    • 2022
  • The reduction of milk yield caused by heat stress in summer is the main condition restricting the economic benefits of dairy farms. To examine the impact of hyperthermia on bovine mammary epithelial (MAC-T) cells, we incubated the MAC-T cells at thermal-neutral (37℃, CON group) and hyperthermic (42℃, HS group) temperatures for 6 h. Subsequently, the cell viability and apoptotic rate of MAC-T cells, apoptosis-related genes expression, casein and amino acid transporter genes, and the expression of the apoptosis-related proteins were examined. Compared with the CON group, hyperthermia significantly decreased the cell viability (p < 0.05) and elevated the apoptotic rate (p < 0.05) of MAC-T cells. Moreover, the expression of heat shock protein (HSP)70, HSP90B1, Bcl-2-associated X protein (BAX), Caspase-9, and Caspase-3 genes was upregulated (p < 0.05). The expression of HSP70 and BAX (pro-apoptotic) proteins was upregulated (p < 0.05) while that of B-cell lymphoma (BCL)2 (antiapoptotic) protein was downregulated (p < 0.05) by hyperthermia. Decreased mRNA expression of mechanistic target of rapamycin (mTOR) signaling pathway-related genes, amino acid transporter genes (SLC7A5, SLC38A3, SLC38A2, and SLC38A9), and casein genes (CSNS1, CSN2, and CSN3) was found in the heat stress (HS) group (p < 0.05) in contrast with the CON group. These findings illustrated that hyperthermia promoted cell apoptosis and reduced the transport of amino acids into cells, which inhibited the milk proteins synthesis in MAC-T cells.

Metastatic lipid-rich mammary carcinoma in a dog

  • Kim, Myung-Chul;Kim, So-Yeon;Lee, Su-Hyung;Kim, Dae-Yong;Yoon, Jung-Hee;Kim, Wan Hee;Lee, Jeong-Ha;Kim, Yongbaek
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.265-268
    • /
    • 2014
  • An adult female dog was presented for evaluation of mammary gland masses. Complete blood count and serum chemistry data were within normal limits. Fine-needle aspiration cytology of the mammary masses revealed clusters of malignant epithelial cells with clear cytoplasmic vacuoles. Based on histopathological findings, a diagnosis of lipid-rich mammary carcinoma was made. Approximately 5 weeks after surgical removal, the tumor recurred at the surgery site and metastasis to the tibia was detected. Due to the poor prognosis and deterioration of the condition, the dog was euthanized.

Development and Characterization of a Specific Anti-Caveolin-1 Antibody for Caveolin-1 Functional Study in Human, Goat and Mouse

  • Ke, Meng-Wei;Jiang, Yan-Nian;Li, Yi-Hung;Tseng, Ting-Yu;Kung, Ming-Shung;Huang, Chiun-Sheng;Cheng, Winston Teng-Kuei;Hsu, Jih-Tay;Ju, Yu-Ten
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.856-865
    • /
    • 2007
  • Caveolin-1 of the caveolin family of proteins regulates mammary gland development and has been shown to play a contradictory role in breast tumor progression. A specific anti-Caveolin-1 antibody will be useful for functional study of Caveolin-1 in different tissues. In this study, we generated a rabbit polyclonal antibody that specifically recognizes the N-terminal amino acids 50-65 of Caveolin-1. This polyclonal antibody specifically reacted with Caveolin-1 extracted from cells of different species, including human epithelial A431 cells, goat primary mammary epithelial cells and mice fibroblast NIH 3T3 cells, by Western blotting. Endogenous Caveolin-1 protein expressing in cells and normal human tissues was detected by this polyclonal antibody using immunocytofluorescent and immunohistochemical staining, respectively. Furthermore, an apparent decrease in Caveolin-1 expression in tumorous breast and colon tissues was detected by this polyclonal antibody. In conclusion, we have identified amino acids 50-65 of Caveolin-1, which contains an epitope that is specific to Caveolin-1 and is conserved in the human, goat and mouse. In future, this anti-Caveolin-1 antibody can be used to examine the progression of breast and colon cancers and to study functions of Caveolin-1 in human, goat and mouse cells.

Artificial Induction of Environmental Mammary Stress by Temperature and Micro-organism Causing Mastitis and Modulation of Mammary Growth by Adenosine, IGF-I and Prolatin In Vitro (In Vitro내 유선조직에의 인위적인 온도 및 유방염 발생 미생물에 의한 환경스트레스 유기와 Adenosine, IGF-I 및 Prolactin에 의한 성장조절작용)

  • 정석근;장병배;이창수;박춘근;홍병주;여인서
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.325-333
    • /
    • 1997
  • Recent evidence indicates that growth factors modulate response of mammary epithelial cells to environmental stress. The objective of this study was to examine the cellular and biochemical responses of mammary tissue to environmental stress caused by artificial mastitis. For experimental a, pp.oach, toxins of most mastitis causing organisms(Staph. aureus or Strep. agalactiae) and heat stress(42$^{\circ}C$) were artificially exposed to mammary tissue. Effects of these environmental stresses on cell growth, cell death and heat shock protein synthesis were examined. Lactating mammary tissure were cultured under basal medium(DMEM) su, pp.emented with insulin(10$\mu\textrm{g}$/ml) and aldosterone(1$\mu\textrm{g}$/ml). All treatment groups in heat stress at 42$^{\circ}C$ incubation significantly decreased DNA synthesis rates in comparison with those at 39$^{\circ}C$(P<0.05), however, these decreased DNAa synthesis rates were recovered by addition of adenosine(10$\mu$M) and IGFI(10ng/ml). Similar results were obtained when tissue growth rates were measured by DNA content/tissue. Strep. agalactiae toxin did not significantly decreased DNA content/tissue in comparison with no treatment of bacterial toxin with or without heat stress, however, tended to decrease DNA contents/tissue without heat stress. In the fluorography analysis, heat stress(42$^{\circ}C$ incubation) slightly increased 35S-methoionine labelled 70kd protein synthesis. These results indicate that environmental stress caused by artificial mastitis slightly decreased mammary growth or mammary size, however, these results could be recovered by addition of adenosine and IGF-I.

  • PDF

Development of a Human Mammary Epithelial Cell Culture Model for Evaluation of Drug Transfer into Milk

  • Kimura Soichiro;Morimoto Keiko;Okamoto Hiroshi;Ueda Hideo;Kobayashi Daisuke;Kobayashi Jun;Morimoto Yasunori
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.424-429
    • /
    • 2006
  • In the present study, a human mammary epithelial cell (HMEC) culture model was developed to evaluate the potential involvement of carrier-mediated transport systems in drug transfer into milk. Trypsin-resistant HMECs were seeded on $Matrigel^{circledR}-coated$ filters to develop monolayers of functionally differentiated HMEC. Expression of the specific function of HMEC monolayers was dependent of the number of trypsin treatments. Among the monolayers with different numbers of treatment (treated 1 to 3 times), the monolayer treated 3 times (3-t-HMEC monolayer) showed the highest maximal transepithelial resistance and expression of $\beta-casein$ mRNA as an index of differentiation. Transport of tetraethylammonium (TEA) across the 3-t-HMEC monolayer in the basolateral-to-apical direction was significantly higher than that in the apical-to-basolateral direction (p<0.05), whereas such directionality was not observed for p-aminohippurate, suggesting the existence of organic cation transporters, but not organic anion transporters. In fact, expression of mRNAs of human organic cation transporter (OCT) 1 and 3 were detected in the 3-t-HMEC monolayer. These results indicate that the 3-t-HMEC monolayer is potentially useful for the evaluation of carrier-mediated secretion of drugs including organic cations into human milk.

Fine Needle Aspiration Cytology of Invasive Ductal Carcinoma with Osteoclast-like Giant cells - A Case Report - (유파골세포형 다핵거대세포를 동반한 침윤성 유방관암종의 세침흡인세포학적 소견 - 1예 보고 -)

  • Jung, Eun-Ha;Park, Hye-Rim;Sohn, Jin-Hee
    • The Korean Journal of Cytopathology
    • /
    • v.9 no.2
    • /
    • pp.221-225
    • /
    • 1998
  • Malignant tumors of the breast with stromal multinucleated giant cells are rare entity of uncertain clinical significance. There have been few reports on the fine needle aspiration cytologic(FNAC) findings about these rare tumors. We report a FNAC case of invasive mammary carcinoma with osteoclast-like giant cells not only for its rare occurrence but in particular for its distinctive cytologic picture on aspirated material. The patient was a 40-year-old woman who presented with a right breast mass for one month. Mammography showed a well-demarcated rounded mass density without calcification. The aspirates of FNAC were highly cellular and two main cell types were seen; malignant epithelial cells and osteoclast-like multinucleated giant cells. The carcinoma cells occurred singly or arranged in loose clusters with ill-defined cytoplasm, oval nuclei, coarse chromatin and small but distinct nucleoli. The multinucleated giant cells showed variable number of nuclei with prominent nucleoli and abundant dense oxyphilic cytoplasm. The immunocytochemical studies suggested that osteoclast-like giant cells were not of epithelial origin, but rather of histlocytic origin.

  • PDF