References
- Cardenas H, Carvajal A, Utreras E, et al. Lactation inhibits the potentiating effect of galanin upon the GnRH-induced LH release observed in diestrous-1 rat. Biol Res 1998;31:351-8.
- Threadgold LC, Kuhn NJ. Glucose-6-phosphate hydrolysis by lactating rat mammary gland. Int J Biochem 1979;10:683-5. https://doi.org/10.1016/0020-711X(79)90212-X
- Kuhn NJ, Carrick DT, Wilde CJ. Lactose synthesis: the possibilities of regulation. J Dairy Sci 1980;63:328-36. https://doi.org/10.3168/jds.S0022-0302(80)82934-1
- Stacey A, Schnieke A, Kerr M, et al. Lactation is disrupted by alphalactalbumin deficiency and can be restored by human alpha-lactalbumin gene replacement in mice. Proc Natl Acad Sci USA 1995;92: 2835-9. https://doi.org/10.1073/pnas.92.7.2835
- Xiao CT, Cant JP. Relationship between glucose transport and metabolism in isolated bovine mammary epithelial cells. J Dairy Sci 2005; 88:2794-805. https://doi.org/10.3168/jds.S0022-0302(05)72959-3
- Rulquin H, Rigout S, Lemosquet S, Bach A. Infusion of glucose directs circulating amino acids to the mammary gland in well-fed dairy cows. J Dairy Sci 2004;87:340-9. https://doi.org/10.3168/jds.S0022-0302(04)73173-2
- Brown EG, Vandehaar MJ, Daniels KM, et al. Effect of increasing energy and protein intake on mammary development in heifer calves. J Dairy Sci 2005;88:595-603. https://doi.org/10.3168/jds.S0022-0302(05)72723-5
- Al-Trad B, Reisberg K, Wittek T, et al. Increasing intravenous infusions of glucose improve body condition but not lactation performance in midlactation dairy cows. J Dairy Sci 2009;92:5645-58. https://doi.org/10.3168/jds.2009-2264
- Blum JW, Schnyder W, Kunz PL, et al. Reduced and compensatory growth: endocrine and metabolic changes during food restriction and refeeding in steers. J Nutr 1985;115:417-24. https://doi.org/10.1093/jn/115.4.417
- Daniels KM, McGilliard ML, Meyer MJ, et al. Effects of body weight and nutrition on histological mammary development in Holstein heifers. J Dairy Sci 2009;92:499-505. https://doi.org/10.3168/jds.2008-1007
- Zavizion B, van Duffelen M, Schaeffer W, Politis I. Establishment and characterization of a bovine mammary epithelial cell line with unique properties. In Vitro Cell Dev Biol Anim 1996;32:138-48. https://doi.org/10.1007/BF02723679
- Huynh HT, Robitaille G, Turner JD. Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp Cell Res 1991;197:191-9. https://doi.org/10.1016/0014-4827(91)90422-Q
- Thorn SR, Purup S, Vestergaard M, et al. Regulation of mammary parenchymal growth by the fat pad in prepubertal dairy heifers: role of inflammation-related proteins. J Endocrinol 2008;196:539-46. https://doi.org/10.1677/JOE-07-0501
- Purup S, Nielsen TS. Cell-based models to test the effects of milkderived bioactives. Animal 2012;6:423-32. https://doi.org/10.1017/S1751731111002540
- Cohick WS, Turner JD. Regulation of IGF binding protein synthesis by a bovine mammary epithelial cell line. J Endocrinol 1998;157: 327-36. https://doi.org/10.1677/joe.0.1570327
- Berry SDK, Nielsen MSW, Sejrsen K, et al. Use of an immortalized bovine mammary epithelial cell line (MAC-T) to measure the mitogenic activity of extracts from heifer mammary tissue: effects of nutrition and ovariectomy. Domest Anim Endocrinol 2003;25: 245-53. https://doi.org/10.1016/S0739-7240(03)00062-6
- Peterson DG, Matitashvili EA, Bauman DE. The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1. J Nutr 2004;134:2523-7. https://doi.org/10.1093/jn/134.10.2523
- Thorn SR, Purup S, Cohick WS, et al. Leptin does not act directly on mammary epithelial cells in prepubertal dairy heifers. J Dairy Sci 2006;89:1467-77. https://doi.org/10.3168/jds.S0022-0302(06)72214-7
- Bruzelius K, Purup S, James P, Onning G, Akesson B. Biosynthesis of selenoproteins in cultured bovine mammary cells. J Trace Elem Med Biol 2008;22:224-33. https://doi.org/10.1016/j.jtemb.2008.03.009
- Sorensen BM, Chris Kazala E, Murdoch GK, et al. Effect of CLA and other C18 unsaturated fatty acids on DGAT in bovine milk fat biosynthetic systems. Lipids 2008;43:903-12. https://doi.org/10.1007/s11745-008-3216-z
- Zhou Y, Capuco AV, Jiang H. Involvement of connective tissue growth factor (CTGF) in insulin-like growth factor-I (IGF1) stimulation of proliferation of a bovine mammary epithelial cell line. Domest Anim Endocrinol 2008;35:180-9. https://doi.org/10.1016/j.domaniend.2008.05.003
- Naso LG, Lezama L, Rojo T, et al. Biological evaluation of morin and its new oxovanadium(IV) complex as antio-xidant and specific anti-cancer agents. Chem Biol Interact 2013;206:289-301. https://doi.org/10.1016/j.cbi.2013.10.006
- Wang B, Zhao M-z, Cui N-p, et al. Kruppel-like factor 4 induces apoptosis and inhibits tumorigenic progression in SK-BR-3 breast cancer cells. FEBS Open Bio 2015;5:147-54. https://doi.org/10.1016/j.fob.2015.02.003
- Lee HY, Heo YT, Lee SE, et al. Short communication: retinoic acid plus prolactin to synergistically increase specific casein gene expression in MAC-T cells. J Dairy Sci 2013;96:3835-9. https://doi.org/10.3168/jds.2012-5945
- Lyons WR. Hormonal synergism in mammary growth. Proc R Soc Lond B Biol Sci 1958;149:303-25. https://doi.org/10.1098/rspb.1958.0071
- Li H, Gu Y, Zhang Y, Lucas MJ, Wang Y. High glucose levels downregulate glucose transporter expression that correlates with increased oxidative stress in placental trophoblast cells in vitro. J Soc Gynecol Invest 2004;11:75-81. https://doi.org/10.1016/j.jsgi.2003.08.002
- Gross A. BCL-2 proteins: regulators of the mitochondrial apoptotic program. IUBMB Life 2001;52:231-6. https://doi.org/10.1080/15216540152846046
- Oswiecimska J, Suwala A, Swietochowska E, et al. Serum omentin levels in adolescent girls with anorexia nervosa and obesity. Physiol Res 2015;64:701-9.
- Vinals F, Gross A, Testar X, et al. High glucose concentrations inhibit glucose phosphorylation, but not glucose transport, in human endothelial cells. Biochim Biophys Acta (BBA)-Mol Cell Res 1999;1450: 119-29. https://doi.org/10.1016/S0167-4889(99)00035-X
- Sun Z, Shushanov S, LeRoith D, Wood TL. Decreased IGF type 1 receptor signaling in mammary epithelium during pregnancy leads to reduced proliferation, alveolar differentiation, and expression of insulin receptor substrate (IRS)-1 and IRS-2. Endocrinology 2011;152:3233-45. https://doi.org/10.1210/en.2010-1296
- Kleinberg DL, Barcellos-Hoff MH. The pivotal role of insulin-like growth factor I in normal mammary development. Endocrinol Metab Clin North Am 2011;40:461-71, vii. https://doi.org/10.1016/j.ecl.2011.06.001
-
Shushanov SS. Insulin-like growth factors 1 and 2 regulate expression of
${\beta}$ -casein in vitro in mouse mammary epithelial cells. Bull Exp Biol Med 2011;152:202-5. https://doi.org/10.1007/s10517-011-1488-4 - Lollivier V, Marnet PG, Delpal S, et al. Oxytocin stimulates secretory processes in lactating rabbit mammary epithelial cells. J Physiol 2006;570:125-40. https://doi.org/10.1113/jphysiol.2005.097816
- Ginger MR, Grigor MR. Comparative aspects of milk caseins. Comp Biochem Physiol B Biochem Mol Biol 1999;124:133-45. https://doi.org/10.1016/S0305-0491(99)00110-8
Cited by
- Moringa Extract Attenuates Inflammatory Responses and Increases Gene Expression of Casein in Bovine Mammary Epithelial Cells vol.9, pp.7, 2017, https://doi.org/10.3390/ani9070391